Sulfur solubility in sulfolane electrolytes for lithium-sulfur batteries

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The solubility of sulfur in sulfolane and sulfolane solutions of lithium salts [LiBF4, LiClO4, LiPF6, LiSO3CF3 and LiN(SO2CF3)2], promising electrolytes for lithium-sulfur batteries, was determined by UV-vis spectroscopy. It was found that the solubility of sulfur in sulfolane at 30°C is 82.0 mM, and in sulfolane solutions of lithium salts (1 M) is 4-9 times lower than in pure sulfolane. The dependence of sulfur solubility on the concentration of lithium salts is not linear, it is 32.9 and 5.8 mM for sulfolane solutions of 0.5 М LiClO4 and 2.35 M LiClO4, respectively.

作者简介

E. Karaseva

Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences

Email: karaseva@anrb.ru

L. Khramtsova

Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences

N. Shakirova

Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences

E. Kuzmina

Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences

V. Kolosnitsyn

Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences

参考

  1. Zhang S.S. // J. Power Sources. 2013. Vol. 231. P. 153. doi: 10.1016/j.jpowsour.2012.12.102
  2. Zu C.-X., Li H. // Energy Environ. Sci. 2011. Vol. 4. P. 2614. doi: 10.1039/c0ee00777c
  3. Sciamanna S.F., Lynn S. // Ind. Eng. Chem. Res. 1988. Vol. 27. N 3. P. 485.
  4. Zheng D., Zhang X., Li C., McKinnon M.E., Sadok R.G., Qu D., Yu X., Lee H.-S., Yang X.-Q., Qu D. // J. Electrochem. Soc. 2015. Vol. 162. N 1. P. A203. doi: 10.1149/2.1011501jes
  5. Harks P.P.R.M.L., Robledo C.B., Verhallen T.W., Notten P.H.L., Mulder F.M. // Adv. Energy Mater. 2016. Article no. 1601635. doi: 10.1002/aenm.201601635
  6. Park J.W., Yamauchi K., Takashima E., Tachikawa N., Ueno K., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. N 9. P. 4431. doi: 10.1021/jp400153m
  7. Ueno K., Park J.-W., Yamazaki A., Mandai T., Tachikawa N., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. P. 20509. dx.doi.org/10.1021/jp407158y
  8. Vaughn J.W., Hawkins C.F. // J. Chem. Eng. Data. 1964. Vol. 9. P. 140. doi: 10.1021/je60020a047
  9. Burwell R.L., Langford C.H. // J. Am. Chem. Soc. 1959. Vol. 81. P. 3799. doi: 10.1021/ja01523a079
  10. Xu K., Angell C.A. // Electrochem. Soc. 2002. Vol. 149. N 7. P. A920. doi: 10.1149/1.1483866
  11. Колосницын В.С., Шеина Л.В., Мочалов С.Э. // Электрохимия. 2008. Т. 44. Вып. 5. С. 620
  12. Kolosnitsyn V.S., Sheina L.V., Mochalov S.E. // Russ. J. Electrochem. 2008. Vol. 44. N 5. P. 575. doi: 10.1134/S102319350805011X
  13. Kolosnitsyn V.S., Kuzmina E.V., Karaseva E.V. // ECS Transaction. 2009. Vol. 19. P. 25. doi: 10.1149/1.3247062
  14. Karaseva E.V., Khramtsova L.A., Lobov A.N., Kuzmina E.V., Eroglu D., Kolosnitsyn V.S. // J. Power Sources. 2022. Vol. 548. Article no. 231980. doi: 10.1016/j.jpowsour.2022.231980
  15. Nakanishi A., Ueno K., Watanabe D., Ugata Y., Matsumae Y., Liu J., Thomas M.L., Dokko K., Watanabe M. // J. Phys. Chem. (C). 2019. Vol. 123. N 23. P. 14229. doi: 10.1021/acs.jpcc.9b02625
  16. Wang, Y., Xing, L., Li, W., Bedrov, D. // J. Phys. Chem. Lett. 2013. Vol. 4. P. 3992. doi: 10.1021/jz401726p
  17. Jow T.R., Xu K., Borodin O., Ue M. Electrolytes for lithium and lithium-ion batteries. Modern aspects of electrochemistry. Springer Science+Business Media, 2014. Vol. 58. P. 476. doi: 10.1007/978-1-4939-0302-3
  18. Yoon S., Lee Y.-H., Shin K.-H., Cho S.B., Chung W.J. // Electrochim. Acta. 2014. Vol. 145. P. 170. doi: 10.1016/j.electacta.2014.09.007
  19. Linert W., Jameson R.F., Taha A. // J. Chem. Soc. Dalton Trans. 1993. Vol. 21. P. 3181. doi: 10.1039/DT9930003181
  20. Linert W., Camard A., Armand M., Michot C. // Coord. Chem. Rev. 2002. Vol. 226. P. 137. doi: 10.1016/S0010-8545(01)00416-7
  21. Naejus R., Coudert R., Willmann P., Lemordant D. // Electrochim. Acta. 1998. Vol. 43. N 3-4. P. 275. doi: 10.1016/s0013-4686(97)00073-x
  22. Salomon M. // J. Solution Chem. 1993. Vol. 22. N 8. P. 715. doi: 10.1007/bf00647411
  23. Han H.-B., Zhou S.-S., Zhang D.-J., Feng S.-W., Li L.-F., Liu K., Feng W.-F., Nie J., Li H., Huang X.-J., Armand M., Zhou Z.-B // J. Power Sources. 2011. Vol. 196. P. 3623. doi: 10.1016/j.jpowsour.2010.12.040
  24. Košir U., Cigi I.K., Markelj J., Talian S.D., Dominko R. // Electrochim. Acta. 2020. Vol. 363. Article 137227. doi: 10.1016/j.electacta.2020.137227
  25. Cañas N.A. PhD Dissert. (Dr.-Ing.). Stuttgart, 2015. 189 p.
  26. Steudel R., Jensen D., Gobel P., Hugo P. // Ber. Buns. physik. Chem. 1988. Vol. 92. N 2 P. 118. doi: 10.1002/bbpc.198800031
  27. Heatley X.G., Page E.J. // Analyt. Chem. 1952. Vol. 24. N 11. P. 1854. doi: 10.1021/AC60071A047
  28. Karaseva E.V., Kuzmina E.V., Kolosnitsyn D.V., Shakirova N.V., Sheina L.V., Kolosnitsyn V.S. // Electrochim. Acta. 2019. Vol. 296. P. 1102. doi: 10.1016/j.electacta.2018.11.019

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##