Effect of glass crystallization parameters on conductivity of Li1.5+xAl0.5Ge1.5SixP3–xO12 glass-ceramics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Glass-ceramic samples of the Li1.5+ x Al0.5Ge1.5Si x P3- x O12 system ( x = 0-0.1) were obtained by directional crystallization of glasses. The glass transition, onset and peak temperatures of crystallization were determined using differential scanning calorimetry. The phase composition of glass-ceramics was determined by X-ray phase analysis. Electrical conductivity is studied using electrochemical impedance. Based on the data obtained, the homogeneity region of solid solutions was established and the optimal conditions for producing SiO2-doped glass-ceramics were identified. The composition with x = 0.02, crystallized at 750°C with a heating rate of 3 deg/min for 2 h, had the highest lithium-ion conductivity at room temperature (4.55×10-4 S/cm).

Sobre autores

E. Kuznetsova

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

S. Pershina

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: svpershina_86@mail.ru

T. Kuznetsova

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Bibliografia

  1. Yang Q., Deng N., Zhao Y., Gao L., Cheng B., Kang W. // Chem. Eng. J. 2023. Vol. 451. Article no. 138532. doi: 10.1016/j.cej.2022.138532
  2. Zhang Z., Shao Y., Lotsch B., Hu Y.-S., Li H., Janek J., Nazar L.F., Nan C.-W, Maier J., Armand M., Chen L. // Energy Environ. Sci. 2018. Vol. 11. P. 1945. doi: 10.1039/C8EE01053F
  3. Sun C., Liu J., Gong Y., Wilkinson D.P., Zhang J. // Nano Energy. 2017. Vol. 33. P. 363. doi: 10.1016/j.nanoen.2017.01.028
  4. Mariappan C.R., Yada C., Rosciano F., Roling B. // J. Power Sour. 2011. Vol. 196. P. 6456. doi 0.1016/j.jpowsour.2011.03.065
  5. Knauth P. // Solid State Ionics. 2009. Vol. 180. P. 14. doi: 10.1016/j.ssi.2009.03.022
  6. Fu J. // Solid State Ionics. 1997. Vol. 104. P. 191. doi: 10.1016/S0167-2738(97)00434-7
  7. DeWees R., Wang H. // ChemSusChem. 2019. Vol. 12. P. 3713. doi: 10.1002/cssc.201900725
  8. Fu J. // J. Am. Ceram. Soc. 1997. Vol. 80. P. 1901. doi: 10.1111/j.1151-2916.1997.tb03070.x
  9. Cui Y., Mahmoud M.M., Rohde M., Ziebert C., Seifert H.J. // Solid State Ionics. 2016. Vol. 289. P. 125. doi: 10.1016/j.ssi.2016.03.007
  10. Zhu Y., Zhang Y., Lu L. // J. Power Sour. 2015. Vol. 290. P. 123. doi: 10.1016/j.jpowsour.2015.04.170
  11. Thokchom J.S., Kumar B. // J. Power Sour. 2008. Vol. 185. P. 480. doi: 10.1016/j.jpowsour.2008.07.009
  12. Thokchom J.S., Kumar B. // J. Power Sour. 2010. Vol. 195. P. 2870. doi: 10.1016/j.jpowsour.2009.11.037
  13. Xiao W., Wang J., Fan L., Zhang J., Li X. // Energy Stor. Mater. 2019. Vol. 19. P. 379. doi: 10.1016/j.ensm.2018.10.012
  14. Fu J. // Solid State Ionics. 1997. Vol. 96. P. 195. doi: 10.1016/S0167-2738(97)00018-0
  15. Hartmann P., Leichtweiss T., Busche M.R., Schneider M., Reich M., Sann J., Adelhelm P., Janek J. // J. Phys. Chem. (C). 2013. Vol. 117. P. 21064. doi: 10.1021/jp4051275
  16. Imanishi N., Hasegawa S., Zhang T., Hirano A., Takeda Y., Yamamoto O. // J. Power Sour. 2008. Vol. 185. P. 1392. doi: 10.1016/j.jpowsour.2008.07.080
  17. Saffirio S., Falco M., Appetecchi G.B., Smeacetto F., Gerbaldi C. // J. Eur. Ceram. Soc. 2022. Vol. 42. P. 1023. doi: 10.1016/j.jeurceramsoc.2021.11.014
  18. Das A., Goswami M., Krishnan M. // Ceram. Int. 2018. Vol. 44. N 11. P. 13373. doi: 10.1016/j.ceramint.2018.04.172
  19. Pershina S.V., Kuznetsov T.A., Vovkotrub E.G., Belyakov S.A., Kuznetsova E.S. // Membranes. 2022. Vol. 12. N 12. P. 1245. doi: 10.3390/membranes12121245
  20. Kilic G., Ilik E., Mahmoud K.A., El Agawany F.I., Alomairy S., Rammah Y.S. // Appl. Phys. (A). 2021. Vol. 127. P. 265. doi: 10.1007/s00339-021-04409-9
  21. Dubois G., Volksen W., Magbitang T., Miller R.D., Gage D.M., Dauskardt R.H. // Adv. Mater. 2007. Vol. 19. P. 3989. doi: 10.1002/adma.200701193
  22. Das A., Dixit A., Goswami M., Mythili R., Hajra R.N. // DAE Solid State Physics Symposium. 2017. P. 140022-1. doi: 10.1063/1.5029153
  23. Сабиров В.Х. // ЖСХ. 2017. Т. 58. № 1. С. 194. doi: 10.15372/JSC20170125
  24. Sabirov V.K. // J. Struct. Chem. 2017. Vol. 58. P. 183. doi: 10.1134/S0022476617010255
  25. Pershina S.V., Antonov B.D., Farlenkov A.S., Vovkotrub E.G. // J. Alloys Compd. 2020. Vol. 835. P. 155281. doi: 10.1016/j.jallcom.2020.155281
  26. Illbeigi M., Fazlali A., Kazazi M., Mohammadi A.H. // Solid State Ionics. 2016. Vol. 289. P. 180. doi: 10.1016/j.ssi.2016.03.012
  27. Sun Y., Suzuki K., Hori S., Hirayama M., Kanno R. // Chem. Mater. 2017. Vol. 29. P. 5858. doi: 10.1021/acs.chemmater.7b00886
  28. Kotobuki M., Hanc E., Yan B., Molenda J., Lu L. // Ceram. Int. 2017. Vol. 43. P. 12616. doi: 10.1016/j.ceramint.2017.06.140
  29. Thokchom J.S., Kumar B. // J. Am. Ceram. Soc. 2007. Vol. 90. № 2. P. 462. doi: 10.1111/j.1551-2916.2006.01446.x
  30. Pershina S.V., Pankratov A.A., Vovkotrub E.G., Antonov B.D. // Ionics. 2019. Vol. 25. P. 4713. doi: 10.1007/s11581-019-03021-5
  31. Куншина Г.Б., Бочарова И.В., Иваненко В.И. // Неорг. матер. 2020. Т. 56. № 2. С. 214. doi: 10.31857/S0002337X20020086
  32. Kunshina G.B., Bocharova I.V., Ivanenko V.I. // Inorg. Mater. 2020. Vol. 56. N 2. P. 204. doi: 10.1134/S0020168520020089
  33. Бочарова И.В., Куншина Г.Б. // Тр. Кольск. научн. центра РАН. Сер. Техн. науки. 2022. Т. 13. № 1. С. 26. doi: 10.37614/2949-1215.2022.13.1.004

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies