High-temperature synthesis of cobalt nanoparticles in hyperbranched polyester polyol medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of CoNPs cobalt nanoparticles by the method of polyol- process was proposed, which consists in a high-temperature synthesis of polymer-stabilized metal nanoparticles in a matrix of a fourth-generation hyperbranched polyester polyol. Branched polyester polyol acts as both a reducing agent and a stabilizer at the same time. It has been found that the reduction of the precursor CoCl2 with a hyperbranched polyester polyol occurs at 210°C. The introduction of NaOH into the reaction mixture makes it possible to lower the synthesis temperature by 50°C and leads to a change in the mechanism of in situ ripening CoNPs from the digestive mechanism to direct Ostwald ripening.

About the authors

M. P Kutyreva

Kazan Federal University, Butlerov Chemistry Institute

Email: mkutyreva@mail.ru

A. E Burmatova

Kazan Federal University, Butlerov Chemistry Institute

A. A Khannanov

Kazan Federal University, Butlerov Chemistry Institute

V. G Evtugin

Kazan Federal University, Butlerov Chemistry Institute

References

  1. Fievet F., Lagier J., Blin B., Beaudoin B., Figlarz M. // Solid State Ion. 1989. Vol. 32-33. P. 198. doi: 10.1016/0167-2738(89)90222-1
  2. Mourdikoudis S. Reducing agents in colloidal nanoparticle synthesis. The Royal Society of Chemistry, 2021. 482 p. doi: 10.1039/9781839163623
  3. Liu Q., Cao X., Wang T., Wang C., Zhang Q., Ma L. // RSC Adv. 2015. Vol. 5. N 7. P. 4861. doi: 10.1039/c4ra13395a
  4. Takahashi K., Yokoyama S., Matsumoto T., Cuya Huaman J.L., Kaneko H., Piquemal J.Y., Miyamura H., Balachandran J. // New J. Chem. 2016. Vol. 40. N 10. P. 8632. doi: 10.1039/c6nj01738j
  5. Eluri R., Paul B. // Mater. Lett. 2012. Vol. 76. P. 36. doi: 10.1016/j.matlet.2012.02.049
  6. Silvert P.Y., Herrera-Urbina R., Duvauchelle N., Vijayakrishnan V., Elhsissen K.T. // J. Mater. Chem. 1996. Vol. 6. N 4. P. 573. doi: 10.1039/JM9960600573
  7. Soumare Y., Garcia C., Maurer T., Chaboussant G., Ott F., Fiévet F., Piquemal J.Y., Viau G. // Adv. Funct. Mater. 2009. Vol. 19. N 12. P. 1971. doi: 10.1002/adfm.200800822
  8. Joseyphus R.J., Shinoda K., Kodama D., Jeyadevan B. // Mater. Chem. Phys. 2010. Vol. 123. N 2-3. P. 487. doi: 10.1016/j.matchemphys.2010.05.001
  9. Couto G.G., Klein J.J., Schreiner W.H., Mosca D.H., Zarbin A.J.G. // J. Colloid Interface Sci. 2007. Vol. 311. N 2. P. 461. doi: 10.1016/j.jcis.2007.03.045
  10. Wu S.H., Chen D.H. // J. Colloid Interface Sci. 2003. Vol. 259. N 2. P. 282. doi: 10.1016/S0021-9797(02)00135-2
  11. Yang H., Shen C., Song N., Wang Y., Yang T., Gao H., Cheng Z. // Nanotechnology. 2010. Vol. 21. N 37. P. 375602. doi: 10.1088/0957-4484/21/37/375602
  12. Izu N., Matsubara I., Uchida T., Itoh T., Shin W. // J. Ceram. Soc. Japan. 2017. Vol. 125. N 9. P. 701. doi: 10.2109/jcersj2.17114
  13. Žagar E., Žigon M. // Prog. Polym. Sci. 2011. Vol. 36. N 1. P. 53. doi: 10.1016/j.progpolymsci.2010.08.004
  14. Zheng Y., Li S., Weng Z., Gao C. // Chem. Soc. Rev. 2015. Vol. 44. N 12. P. 4091. doi: 10.1039/c4cs00528g
  15. Khannanov A.A., Rossova A.A., Ignatyeva K.A., Ulakhovich N.A., Gerasimov A.V., Boldyrev A.E., Evtugyn V.G., Rogov A.M., Cherosov M.A., Gilmutdinov I.F., Kutyreva M.P. // J. Magn. Magn. Mater. 2021. P. 168808. doi: 10.1016/j.jmmm.2021.168808
  16. Medvedeva O.I., Kambulova S.S., Bondar O.V., Gataulina A.R., Ulakhovich N.A., Gerasimov A.V., Evtugyn V.G., Gilmutdinov I.F., Kutyreva M.P. // J. Nanotechnol. 2017. Vol. 2017. P. 1. doi: 10.1155/2017/7607658
  17. Joseyphus R.J., Matsumoto T., Takahashi H., Kodama D., Tohji K., Jeyadevan B. // J. Solid State Chem. 2007. Vol. 180. N 11. P. 3008. doi: 10.1016/j.jssc.2007.07.024
  18. Aranishi K., Zhu Q-L., Xu Q. // ChemCatChem. 2014. Vol. 6. N 5. P. 1375. doi: 10.1002/cctc.201301006
  19. Alrehaily L.M., Joseph J.M., Biesinger M.C., Guzonas D.A., Wren J.C. // Phys. Chem. Chem. Phys. 2013. Vol. 15. N 3. P. 1014. doi: 10.1039/c2cp43094k
  20. Karahan S., Özkar S. // Int. J. Hydrog. Energy 2015. Vol. 40. N 5. P. 2255. doi: 10.1016/j.ijhydene.2014.12.028
  21. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир; БИНОМ, Лаборатория знаний, 2006. 438 с. doi: 10.1007/978-3-662-04201-4
  22. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc., 2009. doi: 10.1002/9780470405840
  23. Практикум по органической химии / Под ред. Г. Беккера. М.: Мир, 1979. Т. 1. 454 с.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies