УДК 547.245

1,1,3,3-ТЕТРАФЕНИЛ-1,3-БИС(N-МЕТИЛ-АЦЕТАМИДОМЕТИЛ)-1,3-ДИСИЛОКСАН

© 2024 г. Н. Ф. Лазарева^{1,*}, И. В. Стерхова¹, И. М. Лазарев¹

 1 Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук, Иркутск, 664033 Россия

*e-mail: nataly_lazareva@irioch.irk.ru

Поступило в редакцию 8 августа 2024 г. После доработки 3 сентября 2024 г. Принято к печати 5 сентября 2024 г.

1,1,3,3-Тетрафенил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксан образуется в результате мягкого гидролиза N-[хлор(дифенил)силил]метил-N-метилацетамида. Его строение изучено методами спектроскопии ЯМР и рентгеноструктурного анализа. Это первый пример нейтрального (O–Si) хелатного силоксана с координационным узлом C=O \rightarrow SiC₃OSi.

Ключевые слова: N-[хлор(дифенил)силил]метил-N-метилацетамид, гидролиз, 1,1,3,3-тетрафенил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксан, рентгеноструктурный анализ

DOI: 10.31857/S0044460X24050071, EDN: FKALPP

ВВЕДЕНИЕ

Устойчивое развитие и высокая актуальность исследований в области кремнийорганических соединений, содержащих гипервалентный атом кремния, обусловлены их уникальными структурными особенностями, высокой реакционной способностью, возможностью применения в синтетической органической химии и химии материалов как в качестве исходных реагентов, так и генерированных *in situ* активных интермедиатов [1–9]. (O–Si) Хелатные N-силилметилированные производные карбоксамидов и родственных соединений **A** (схема 1) являются типичными представителями соединений гипервалентного кремния [1–3, 10–28]. Среди них наиболее изучены

соединения с координационным узлом $C=O \rightarrow SiC_3X$, в которых аксиальный заместитель является либо атомом галогена либо электроноакцепторной группой [X = Hlg, OTf, OAr, OC(O)R]. Следует отметить, что (O–Si) хелаты, содержащие атом хлора в качестве аксиального заместителя, легко гидролизуются с образованием соответствующих силоксанов с тетракоординированным атомом кремния (схема 2) [20, 27, 29–36]. Их строение доказано методами ИК, ЯМР спектроскопии и рентгеноструктурного анализа, а механизм их образования в результате гидролиза подробно обсуждается в работе [35].

В 90-е годы прошлого столетия было показано, что N-триметилсилиламиды и -лактамы реагируют с бис(хлорметил)дихлорсиланом (в соотношении

Схема 1.

$$R^{1}$$
 $C = 0$
 Me
 Me
 R^{2}
 M
 M
 M

Схема 2.

$$R^{1} C = O Me$$

$$\downarrow Si Me Me$$

$$\downarrow R^{2} N Cl$$

$$\downarrow Si Me$$

$$\downarrow Cl$$

$$\downarrow R^{1}C(O)NR^{2}CH_{2}SiMe_{2}]_{2}O$$

Схема 3.

2:1), образуя бис(карбоксамидометил)дихлорсиланы — соединения с гексакоординированным атомом кремния. Последующий гидролиз как этих соединений, так и их производных привел к получению комплексов $[(LCH_2)_2SiO(CH_2L)_2]^{2+}\cdot 2X^ (LCH_2 -$ лактамометильный или карбоксамидный бидентатный хелатирующий лиганд, $X^- = Cl^-$, TfO^- , $HgCl_3^- HgCl_4^-$). Методом PCA однозначно доказано, что дикатионы дисилоксана $[(LCH_2)_2SiO(CH_2L)_2]^{2+}$ содержат пентакоординированные бис-C,O-хелатные силилиевые ионы, стабилизированные дативным взаимодействием $C=O \rightarrow Si$ [37–40]. Мы не нашли в литературе сведений о нейтральных силоксанах, содержащих (O-Si) хелатную группу с пентакоординированным атомом кремния.

Недавно нами был синтезирован N-[хлор(дифенил)-силил]метил-N-метилацетамид 1 [41]. Оказалось, что это соединение медленно гидролизуется влагой воздуха с образованием моно-(O—Si) хелатного 1,1,3,3-тетрафенил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксана 2 (схема 3). Цель этой работы заключалась в изучении его строения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

С целью исследования молекулярной структуры и межмолекулярных взаимодействий в твердом состоянии был проведен рентгеноструктурный анализ соединения 2. Монокристалл получен перекристаллизацией силоксана 2 из раствора хлороформа. Молекулярная структура силоксана 2 показана на

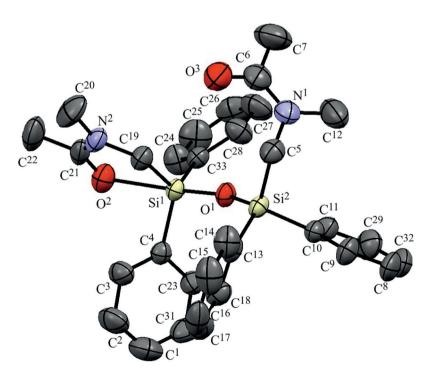


Рис. 1. Общий вид молекулы соединения 2 в кристалле (ОRTEP, 20%). Атомы водорода не показаны.

рис. 1. Детали рентгеноструктурного эксперимента приведены в табл. 1.

Элементарная ячейка содержит четыре молекулы соединения **2**. Основные длины связей, валентные углы и торсионные углы представлены в табл. 2. Координационный полиэдр атома кремния Si^1 можно описать как почти идеальную тригональную бипирамиду. Атомы O^1 и O^2 занимают аксиальные положения, причем длины связей Si^1 – O^1 и Si^1 – O^2 существенно различаются [1.689(2) и 2.302(2) Å

Таблица 1. Кристаллические данные и детали рентгеноструктурного анализа соединения **2**.

Эмпирическая формула	C ₃₂ H ₃₆ N ₂ O ₃ Si ₂		
М, г/моль	552.81		
Кристаллическая система	Моноклинная		
Пространственная группа	$P2_1/c$		
a, Å	16.935(9)		
b, Å	9.587(5)		
c, Å	18.758(9)		
β, град	96.527(17)		
V, Å ³	3026(3)		
Z	4		
$d_{\rm BMH}, \Gamma/{\rm cm}^3$	1.207		
μ , mm ⁻¹	0.152		
Излучение, Å	$MoK_{\alpha}(0.71073)$		
<i>T</i> , K	293(2)		
20, град	4.65–61.64		
Размер кристалла, мм	$0.14 \times 0.16 \times 0.30$		
Цвет кристалла	Бесцветные призмы		
F(000)	1160		
Диапазон изменения	$-23 \le h \le 23$,		
индексов	$ -13 \le k \le 13, -26 \le l \le 22$		
Число измеренных отражений	74824		
Число независимых отражений	9033		
T_{\min}/T_{\max}	0.6917/0.7460		
Число уточняемых параметров	379		
R_1/wR_2 [$I > 2\sigma(I)$]	0.0587/0.1296		
R_1/wR_2	0.1633/0.1623		
Критерий согласия по F^2	1.021		
Остаточная электронная плотность $\rho_{min}/\rho_{max},~e/\mbox{Å}^3$	0.200/-0.270		

соответственно]. Связь Si^1 – O^2 яляется дативной и ее длина лежит в области значений типичных соединений пентакоординированного кремния, а длина связи Si^1 – O^1 близка к значениям длин силоксановых связей [2]. Хелатный гетероцикл имеет почти плоское строение (рис. 2). Отклонение атома Si^1 от плоскости, образованной экваториальными атомами, составляет 0.04 Å, угол $O^1Si^1O^2$ равен 173.2° . Анализ геометрических параметров соединения 2 подтверждает пентакоординацию атома кремния, возникающую в результате образования внутримолекулярной дативной связи $C=O\rightarrow Si$.

(O–Si) хелаты **A**, содержащие в качестве аксиального заместителя кислородсодержащую группу OR, все еще мало изучены. На схеме 4 приведены соединения, строение которых доказано методами спектроскопии и/или рентгеноструктурного анализа [12, 27, 31, 42–45]. Значения геометрических параметров хелатной группы силоксана **2** и соединений **6**, **8**, **11–15** с кислородсодержащей аксиальной группой (схема **4**, табл. **3**) находятся в хорошем согласии [27, 31, 43, 45].

Следует отметить, что значение угла Si²O¹Si¹ составляет 156.9(1)° и существенно отличается от линейного угла 180°. Последнее значение характерно для большинства ациклических 1,3-дисилоксанов [47], в том числе дигидрохлорида 1,1,3,3,-тетраметил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксана [MeC(O)NMeCH₂SiMe₂]₂O·2HCl и нейтральных 1,1,3,3,-тетраметил-1,3-дисилоксанов, содержащих у атома кремния лактамометильную или имидометильную группы [35].

Молекулы 1,1,3,3-тетрафенил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксана связаны между собой двумя короткими контактами: между атомом водорода фенильной группы и некоординированной карбонильной группой $C_{Ar}H\cdots O=C$ (2.629 Å) и атомами водорода фенильных групп $C_{Ar}H\cdots HC_{Ar}$ (2.375 Å) (рис. 3). Эти слабые взаимодействия обеспечивают существование кристаллической структуры соединения 2.

В спектрах ЯМР 1 Н, 13 С и 29 Si соединения **2**, зарегистрированных при комнатной температуре в растворе дейтерохлороформа, присутствует единственный набор сигналов, что указывает на эквивалентность двух групп MeC(O)NMeCH₂SiPh₂. Известно, что в (O–Si) хелатных соединениях наблюдается

Таблица 2. Геометрические параметры соединения 2.

Связь	d, Å	Угол	ф, град	Торсионный угол	θ, град
Si ¹ –O ¹	1.689(2)	O¹Si¹C⁴	99.9(1)	C ¹³ Si ² O ¹ Si ¹	23.2(3)
Si^1-C^4	1.880(2)	$O^1Si^1C^{19}$	96.7(10)	C ¹¹ Si ² O ¹ Si ¹	143.2(2)
$Si^{1}-C^{19}$	1.883(3)	$C^4Si^1C^{19}$	116.5(11)	C ⁵ Si ² O ¹ Si ¹	-98.6(3)
$Si^{1}-C^{33}$	1.883(2)	$O^1Si^1C^{33}$	98.8(1)	C ⁴ Si ¹ O ¹ Si ²	-69.7(3)
Si^1 – O^2	2.302(2)	$C^4Si^1C^{33}$	116.6(10)	$C^{19}Si^1O^1Si^2$	48.8(3)
Si^2-O^1	1.607(2)	C ¹⁹ Si ¹ C ³³	120.5(11)	$C^{33}Si^1O^1Si^2$	171.2(2)
Si^2-C^{13}	1.869(2)	$O^1Si^1O^2$	173.2(1)	O ¹ Si ¹ C ³³ C ²⁴	153.7(2)
Si^2-C^{11}	1.874(2)	C ⁴ Si ¹ O ²	83.6(1)	C ⁴ Si ¹ C ³³ C ²⁴	47.9(2)
Si^2-C^5	1.888(2)	$C^{19}Si^1O^2$	76.5(1)	C ¹⁹ Si ¹ C ³³ C ²⁴	-103.0(2)
O^2 – C^{21}	1.245(3)	$C^{33}Si^1O^2$	84.6(1)	$O^{2}Si^{1}C^{33}C^{24}$	-32.1(2)
$N^1 - C^6$	1.333(4)	$O^1Si^2C^{13}$	113.5(1)	$O^{1}Si^{1}C^{33}C^{28}$	-23.7(2)
N^1 – C^{12}	1.449(4)	$O^1Si^2C^{11}$	108.1(1)	$C^{4}Si^{1}C^{33}C^{28}$	-129.56(19)
$N^1 - C^5$	1.476(3)	$C^{13}Si^2C^{11}$	108.2(1)	C ¹⁹ Si ¹ C ³³ C ²⁸	79.5(2)
$O^{3}-C^{6}$	1.240(3)	O ¹ Si ² C ⁵	109.5(1)	$O^{2}Si^{1}C^{33}C^{28}$	150.4(2)
$C^{20}-N^2$	1.457(4)	$C^{13}Si^2C^5$	108.8(1)	$C^{23}C^{31}C^{1}C^{2}$	2.0(5)
C^{31} – C^{1}	1.375(4)	$C^{11}Si^2C^5$	108.6(1)	$C^{31}C^{1}C^{2}C^{3}$	-1.6(5)
C^{1} – C^{2}	1.372(4)	Si ² O ¹ Si ¹	156.9(1)	$C^1C^2C^3C^4$	-0.1(5)
$C^{19}-N^2$	1.459(3)	$C^{21}O^2Si^1$	109.3(2)	$C^{2}C^{3}C^{4}C^{23}$	1.2(4)
N^2 – C^{21}	1.328(3)	$C^{6}N^{1}C^{12}$	124.2(3)	$C^2C^3C^4Si^1$	-172.3(2)
C^{21} – C^{22}	1.508(3)	$C^{12}N^{1}C^{5}$	117.0(2)	$O^1Si^1C^4C^3$	116.7(2)
C^{24} $-C^{25}$	1.374(4)	$O^3C^6N^1$	122.7(3)	C ¹⁹ Si ¹ C ⁴ C ³	14.0(2)
C^{25} – C^{26}	1.359(4)	$O^3C^6C^7$	119.1(3)	$O^2Si^1C^4C^3$	-57.4(2)
C^{26} $-C^{27}$	1.371(4)	$N^1C^6C^7$	118.2(3)	$O^1Si^1C^4C^{23}$	-56.50(19)

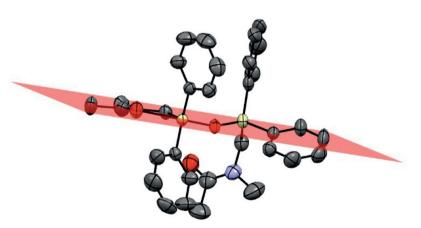


Рис. 2. Плоскость хелатного гетероцикла соединения 2.

пермутационная изомеризация — стереодинамический процесс быстрого (в шкале ЯМР) позиционного обмена заместителей в координационном узле [15]. По-видимому, в растворе соединения 2 протекает аналогичный процесс. Судя по результатам рентге-

ноструктурного анализа, дативная связь $C=O\rightarrow Si$ в соединении **2** является слабой, ее длина только на 0.065 Å меньше, чем в соединении **11** [2.302(2) и 2.367(2) Å соответственно]. Поэтому в растворе хлороформа возможен разрыв дативной связи $C=O\rightarrow Si^1$

Схема 4.

Таблица 3. Геометрические параметры (O-Si) хелатного гетероцикла соединений 2 и 6, 8, 11-15.

				Å			(0 PP0 H		
№	d, Å					ф, град	η _e , % ^a	Ссылка	
	C=O→Si	Si-O	C=O	C-N	NCH ₂	CH ₂ Si	O-Si-O	1le, 70	ССЫЛКа
2	2.302(2)	1.689(2)	1.245(4)	1.327(5)	1.459(4)	1.882(3)	173.2(1)	99.5	Данная работа
6	1.904(4)	2.031(4)	1.269(7)	1.340(7)	1.479(7)	1.888(6)	171.2(2)	100	[43]
8	1.906(6)	1.979(6)	1.283(8)	1.318(8)	1.457(1)	1.902(7)	169.2(2)	99.7	[27]
11	2.367(2)	1.711(2)	1.237(3)	1.315(4)	1.456(3)	1.897(3)	169.1(1)	76.5	[43]
12	2.228(2)	1.778(2)	1.240(2)	1.326(3)	1.448(3)	1.893(2)	167.8(1)	88.6	[43]
13	1.753(2)	2.785(2)	1.314(3)	1.284(3)	1.467(3)	1.883(3)	165.0(1)	75.2	[43]
14	2.078(2)	1.787(2)	1.282(4)	1.323(4)	1.461(4)	1.895(4)	166.8(1)	93.3	[31]
15	1.931(3)	1.931(3)	1.273(4)	1.301(5)	1.452(4)	1.888(3)	172.2(1)	99.5	[45]

^а η_e – степень пентакоординации по формуле Тамао–Кано [46].

с образованием силоксана \mathbf{F} с двумя тетракоординированными атомами кремния и формирование новой дативной связи $C=O \rightarrow Si^2$ (схема 5).

Значение химического сдвига сигнала в спектре ЯМР 29 Si находится в более сильном поле по сравнению с силоксаном (MePh₂Si)₂O, содержащим тетракоординированный атом кремния (-18.03 и

-9.8 м. д. [48] соответственно). В табл. 4 приведены химические сдвиги в спектрах ЯМР 29 Si (O–Si) хелатов с координационным узлом C=O \rightarrow SiC₃OR. К сожалению, изучить соединение **2** методом динамического ЯМР не удалось. Вопрос о том, существует ли это соединение в растворе в форме (O–Si) хелата или в форме **Б** остается открытым.

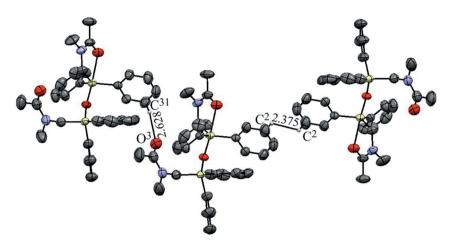


Рис. 3. Короткие контакты в кристалле соединения 2.

Схема 5.

Таблица 4. Химические сдвиги в спектрах ЯМР 29 Si соединения **2** и (O–Si) хелатов с координационным узлом C=O \rightarrow SiC₃OR.

Соединение	δ _{Si} , м. д.	Ссылка
2	-18.07	Данная работа
3	-29.9	[43]
4	-26.2	[43]
5	-23.7	[43]
6	-27.6	[12]
7 ^a	4.70	[27]
9	-37.4	[44]
10	-42.2	[12]
14	-27.6	[31]
15	-26.15	[45]
16	-24.73	[45]

^a B CD₃CN.

ВЫВОДЫ

Таким образом, гидролиз N-[хлор(дифенил)-силил]метил-N-метилацетамида влагой воздуха приводит к образованию 1,1,3,3-тетрафенил-1,3-бис(N-метилацетамидометил)-1,3-дисилоксана. Рентгеноструктурный анализ показал, что этот силоксан в кристалле существует в виде нейтрального (O—Si) монохелатного пентакоординированного соединения кремния с аксиальной силоксановой группой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н, 13 С и 29 Si записаны в растворе CDCl $_{3}$ при комнатной температуре на Bruker DPX 400 спектрометре (400.13, 100.61 и 79.50 МГц соответственно). В качестве внутреннего стандарта использовали ТМС и циклогексан. Элементный анализ выполнен на автоматическом анализаторе

CHNS Thermo Scientific Flash 2000. Перед использованием растворители очищали стандартными методами [49].

Исследование методом PCA выполнено на дифрактометре Bruker D8 Venture с излучением $\text{Mo}K_{\alpha}$ ($\lambda = 0.71073$) с использованием ϕ - и ω -сканирований. Структура расшифрована и уточнена прямым методом с использованием комплекса программ SHELX [50]. Данные были скорректированы на эффекты поглощения с использованием метода мультисканирования (SADABS). Неводородные атомы уточнены анизотропно с использованием набора программ SHELX [50]. Кристаллографические данные зарегистрированы в Кембриджском центре кристаллографических данных (ССDC 2174792).

Соединение **1** синтезировано по методике, описанной ранее [41].

Гидролиз соединения 1. Соединение 1 0.30 г (0.001 моль) выдерживали на воздухе при комнатной температуре в течение 3 месяцев. Перекристаллизацией из хлороформа выделено 0.21 г кристаллов соединения 2, т. пл. 164–166°С. Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 2.18 с [6H, MeC(O)], 2.81 с (4H, NCH₂), 3.27 с (6H, NMe) 7.17–7.96 м (20H, PhSi). Спектр ЯМР 13 С (CDCl₃), δ _C, м. д.: 25.3 [MeC(O)], 36.9 (NCH₂), 41.8 (NMe), 172.7 (C=O), 173.4 (C=O). Спектр ЯМР 29 Si (CDCl₃): δ _{Si} –18.0 м. д. Найдено, %: С 69.83; H 6.74; N 4.91. C₃₂H₃₆N₂O₃Si₂. Вычислено, %: С 69.53; H 6.56; N 5.07.

БЛАГОДАРНОСТЬ

Работа выполнена с использованием аналитического оборудования Байкальского центра коллективного пользования СО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kost D., Kalikhman I. In: The Chemistry of Organic Silicon Compounds/ Eds Z. Rappoport, Y. Apeloig. Chichester: Wiley, 1998. P. 1339. doi 10.1002/0470857250.ch23
- 2. Лукевиц Э., Пудова О.А. // ХГС. 1996. № 11–12. C. 1605; Lukevics E., Pudova О.А. // Chem. Heterocycl. Compd. 1996. Vol. 32. N 11–12. P. 1381. doi 10.1007/ BF01169969

- 3. *Chuit C., Corriu R.J.P., Reyé C., Young J.C.* // Chem. Rev. 1993. Vol. 93. N 4. C. 1371. doi 10.1021/cr00020a003
- 4. *Singh G., Kaur G., Singh J.* // Inorg. Chem. Commun. 2018. Vol. 88. P. 11. doi 10.1016/j.inoche.2017.12.002
- Kung M.C., Riofski M.V., Missaghi M.N., Kung H.H. // Chem. Commun. 2014. Vol. 50. N 25. P. 3262. doi 10.1039/C3CC48766K
- Furin G.G., Vyazankina Q.A., Gostevsky B.A., Vyazankin N.S. // Tetrahedron. 1988. Vol. 44. N 10. P. 2675. doi 10.1016/S0040-4020(88)90008-7
- Wagler J., Böhme U., Kroke E. In: Structure and Bonding Functional Molecular Silicon Compounds I / Ed. D. Scheschkewitz. Cham: Springer, 2013. P. 29. doi 10.1007/430 2013 118
- 8. Sivaramakrishna A., Pete S., Mhaskar C.M., Ramann H., Ramanaiah D.V., Arbaaz M., Niyaz M., Janardan S., Suman P. // Coord. Chem. Rev. 2023. Vol. 485. 215140. doi 10.1016/j.ccr.2023.215140
- Kano N. In: Organosilicon Compounds / Ed. V.Ya. Lee. London: Academic Press, 2017. P. 645. doi 10.1016/ b978-0-12-801981-8.00011-3
- 10. Бауков Ю.И., Крамарова Е.П., Шипов А.Г., Оленева Г.И., Артамкина О.Б., Алюанов А.И., Воронков М.Г., Пестунович В.А. // ЖОХ. 1989. Т. 59. Вып. 1. С. 110.
- 11. *Воронков М.Г., Пестунович В.А., Бауков Ю.И.* // Металлоорг. хим. 1991. Т. 4. № 6. С. 1210; *Voronkov M.G., Pestunovich V.A., Baukov Yu.I.* // J. Organometal. Chem. (USSR). 1991. Vol. 4. N 6. P. 593.
- 12. *Негребецкий В.В., Бауков Ю.И.* // Изв. АН. Сер. хим. 1997. № 11. С. 1912; *Negrebetsky V.V., Baukov Yu.I.* // Russ. Chem. Bull. 1997. Vol. 46. N 11. P. 1807. doi 10.1007/BF02503766
- 13. *Николин А.А.*, *Негребецкий В.В.* // Усп. хим. 2014. T. 83. № 9. C. 848; *Nikolin A.A.*, *Negrebetsky V.V.* // Russ. Chem. Rev. 2014. Vol. 83. N 9. P. 848. doi 10.1070/ RC2014v083n09ABEH004385
- Bassindale A.R. In: Progress in organosilicon chemistry / Eds B. Marciniec, J. Chojnowski. Basel: Gordon & Breach, 1995, P. 191.
- 15. *Негребецкий В.В., Тандура С.Н., Бауков Ю.И.* // Усп. хим. 2009. Т. 78. № 1. С. 24; *Negrebetsky V.V., Tandura S.N., Baukov Yu.I.* // Russ. Chem. Rev. 2009. Vol. 78. N 1. P. 21. doi 10.1070/10.1070/RC2009v078n01ABEH003888
- Nikolin A.A., Kramarova E.P., Shipov A.G., Baukov Yu.I., Negrebetsky V.V., Arkhipov D.E., Korlyukov A.A., Lagunin A.A., Bylikin S.Yu., Bassindale A.R., Taylor P.G. // RSC Adv. 2016. Vol. 6. N 79. P. 75315. doi 10.1039/ c6ra14450k
- Nikolin A.A., Korlyukov A.A., Kramarova E.P., Romanenko A.R., Arkhipov D.E., Tarasenko D.V., Bylikin S.Yu., Baukov Yu.I., Negrebetsky V.V. // Mendeleev Commun. 2022. Vol. 32. N 1. P. 37. doi 10.1016/j.mencom.2022.01.011

- Negrebetsky V.V., Kramarova E.P., Shipov A.G., Baukov Yu.I., Korlyukov A.A., Arkhipov D.E., Bassindale A.R., Taylor P.G., Bylikin S.Yu. // J. Organometal. Chem. 2018. Vol. 872. P. 31. doi 10.1016/j.jorganchem.2018.07.027
- 19. Николин А.А., Корлюков А.А., Крамарова Е.П., Архипов Д.Е., Шипов А.Г., Бауков Ю.И., Негребецкий В.В. // Изв. АН. Сер. хим. 2018. № 7. С. 1299; Nikolin А.А., Korlyukov A.A., Kramarova E.P., Arkhipov D.E., Shipov A.G., Baukov Yu.I., Negrebetsky V.V. // Russ. Chem. Bull. 2018. Vol. 67. N 7. P. 1299. doi 10.1007/s11172-018-2215-3
- 20. Николин А.А., Корлюков А.А., Крамарова Е.П., Архипов Д.Е., Шипов А.Г., Бауков Ю.И., Негребецкий В.В. // Изв. АН. Сер. хим. 2018. № 8. С. 1504; Nikolin А.А., Korlyukov A.A., Kramarova E.P., Arkhipov D.E, Shipov A.G., Baukov Yu.I., Negrebetsky V.V. // Russ. Chem. Bull. 2018. Vol. 67. N 8. P. 1504. doi 10.1007/s11172-018-2247-8
- Soldatenko A.S., Sterkhova I.V., Lazareva N.F. // J. Organometal. Chem. 2023. Vol. 987–988. Article ID 122634. doi 10.1016/j.jorganchem.2023.122634
- 22. Lazareva N.F., Sterkhova I.V., Lazarev I.M. // J. Organometal. Chem. 2024. Vol. 1006. Article ID 123000. doi 10.1016/j.jorganchem.2023.123000
- 23. Lazareva N.F., Chipanina N.N., Oznobikhina L.P., Shain-yan B.A. // J. Organometal. Chem. 2018. Vol. 876. P. 66. doi 10.1016/j.jorganchem.2018.09.007
- Chipanina N.N., Lazareva N.F., Oznobikhina L.P., Shain-yan B.A. // J. Phys. Chem. (A). 2019. Vol. 123. N 24.
 P. 5178. doi 10.1021/acs.jpca.9b03876
- 25. Soldatenko A.S., Sterkhova I.V., Lazareva N.F. // J. Organometal. Chem. 2021. Vol. 940. Article ID 121788. doi 10.1016/j.jorganchem.2021.121788.
- 26. Корлюков А.А., Архипов Д.Е., Володин А.Д., Негребечкий В.В., Николин А.А., Крамарова Е.П., Шипов А.Г., Бауков Ю.И. // Изв. АН. Сер. хим. 2019. № 1. С. 137; Korlyukov A.A., Arkhipov D.E., Volodin A.D., Negrebetskii V.V., Nikolin A.A., Kramarova E.P., Shipov A.G., Baukov Yu.I. // Russ. Chem. Bull. 2019. Vol. 68. N 1. P. 137. doi 10.1007/s11172-019-2429-z
- Korlyukov A.A., Pogozhikh S.A., Ovchinnikov Yu.E., Lyssenko K.A., Antipin M.Yu., Shipov A.G., Zamyshlyaeva O.A., Kramarova E.P., Negrebetsky V.V., Yakovlev I.P., Baukov Yu.I. // J. Organometal. Chem. 2006. Vol. 691. P. 3962. doi 10.1016/j.jorganchem.2006.05.047.
- Yoder C.H., Ryan C.M., Martin G.F., Ho P.S. // J. Organometal. Chem. 1980. Vol. 190. N 1. P. 1. doi 10.1016/S0022-328X(00)82874-0
- Sohail M., Bassindale A.R., Taylor P.G., Korlyukov A.A., Arkhipov D.E., Male L., Coles S.J., Hursthouse M.B. // Organometallics. 2013. Vol. 32. N 6. P. 1721. doi 10.1021/ om301137b
- Bassindale A.R., Borbaruah M., Glynn S.J., Parker D.J., Taylor P.G. // J. Chem. Soc. Perkin Trans. 2. 1999. N 10. P. 2099. doi 10.1039/A904402G

- 31. Sohail M., Panisch R., Bowden A., Bassindale A.R., Taylor P.G., Korlyukov A.A., Arkhipov D.E., Male L., Callear S., Coles S.J., Hursthouse M.B., Harringtond R.W., Clegg W. // Dalton Trans. 2013. Vol. 42. N 30. P. 10971. doi 10.1039/c3dt50613d
- 32. Овчинников Ю.Э., Погожих С.А., Разумовская И.В., Шипов А.Г., Крамарова Е.П., Быликин С.Ю., Негребецкий В.В., Бауков Ю.И. // Изв. АН СССР. Сер. хим. 1998. № 5. 997; Ovchinnikov Yu.E., Pogozhikh S.A., Razumovskaya I.V., Shipov A.G., Kramarova E.P., Bylikin S.Yu., Negrebetsky V.V., Baukov Yu.I. // Russ. Chem. Bull. 1998. Vol. 47. P. 967. doi 10.1007/BF02498170
- 33. Шипов А.Г., Крамарова Е.П., Артамкина О.Б., Негребецкий В.В., Калашникова Н.А., Овчинников Ю.Е., Погожих С.А., Бауков Ю.И. // ЖОХ. 2000. Т. 70. Вып. 6. С. 954.
- Shklover V.E., Buergi H.B., Raselli A., Armbruster T., Hummel W. // Acta Crystallogr. (B). 1991. Vol. 47. N 4. P. 544. doi 10.1107/s0108768191002707
- 35. Шипов А.Г., Крамарова Е.П., Мурашева Т.П., Корлюков А.А., Погожих С.А., Тарасенко С.А., Негребецкий В.В., Яковлев И.П., Бауков Ю.И. // ЖОХ. 2011. Т. 81. Вып. 12. С. 2428; Shipov A.G., Kramarova E.P., Murasheva T.P., Korlyukov A.A., Pogozhikh S.A., Tarasenko S.A., Negrebetskii V.V., Yakovlev I.P., Baukov Yu.I. // Russ. J. Gen. Chem. 2011. Vol. 81. N 12. P. 1979. doi 10.1134/S1070363211120048
- Kertsnus-Banchik E., Gostevskii B., Botoshansky M., Kalikhman I., Kost D. // Organometallics. 2010. Vol. 29. N 21. P. 5435. doi 10.1021/om100461b.
- 37. Крамарова Е.П., Смирнова И.С., Артамкина О.Б., Шипов А.Г., Бауков Ю.И., Овчинников Ю.Э., Мозжухин А.О., Стручков Ю.Т. // ЖОХ. 1993. Т. 63. № 10. С. 2275; Kramarova E.P., Smirnova L.S., Artamkina О.В., Shipov A.G., Baukov Yu.I., Ovchinnikov Yu.E., Mozzhukhin A.O., Struchkov Yu.T. // Russ. J. Gen. Chem. 1993. Vol. 63. N 10. P. 1580.
- 38. Шипов А.Г., Крамарова Е.П., Погожих С.А., Негребецкий В.В., Смирнова Л.С., Артамкина О.Б., Быликин С.Ю., Овчинников Ю.Э., Бауков Ю.И. // Изв. АН. Сер. хим. 2007. № 3. С. 446; Shipov A.G., Kramarova E.P., Pogozhikh S.A., Negrebetskii V.V., Smirnova L.S., Artamkina O.B., Bylikin S.Yu., Ovchinnikov Yu.E., Baukov Yu.I. // Russ. Chem. Bull. 2007. Vol. 56. N 3. P. 461. doi 10.1007/s11172-007-0075-3
- Gostevskii B., Zamstein N., Korlyukov A.A., Baukov Yu.I., Botoshansky M., Kaftory M., Kocher N., Stalke D., Kalikhman I., Kost D. // Organometallics. 2006. Vol. 25. N 22. P. 5416. doi 10.1021/om060629w
- Шипов А.Г., Корлюков А.А., Крамарова Е.П., Архипов Д.Е., Быликин С.Ю., Хунзе Ф., Погожих С.А., Мурашева Т.П., Негребецкий В.В., Хрусталев В.Н., Овчинников Ю.Э., Бассиндейл А.Р., Тейлор П.Г.А., Бауков Ю.И. // ЖОХ. 2011. Т. 81. Вып. 12. С. 1963;

- Shipov A.G., Korlyukov F.F., Kramarova E.P., Arkhipov D.E., Bylikin S.Yu., Hunze F., Pogozhikh S.A., Murasheva T.P., Negrebetskii V.V., Khrustalev V.N., Ovchinnikov Yu.E., Bassindale A.R., Taylor P.G.A., Baukov Yu.I. // Russ. J. Gen. Chem. 2011. Vol. 81. N 12. P. 2412. doi 10.1134/S1070363211120036
- 41. *Лазарева Н.Ф., Лазарев И.М.* // ЖОХ. 2017. Т. 87. № 8. С. 1309; *Lazareva N.F., Lazarev I.M.* // Russ. J. Gen. Chem. 2017. Vol. 87. N 8. P. 1721. doi 10.1134/ S107036321708014X.
- 42. *Солдатенко А.С., Лазарева Н.Ф.* // Изв. АН. Сер. хим. 2023. № 9. С. 2148; *Soldatenko A.S., Lazareva N.F.* // Russ. Chem. Bull. 2023. Vol. 72. N 9. P. 2148. doi 10.1007/s11172-023-4010-z
- 43. Овчинников Ю.Э., Мачарашвили А.А., Стручков Ю.Т., Шипов А.Г., Бауков Ю.И. // ЖСХ. 1994. Т. 35. № 1. С. 100; Ovchinnikov Yu.E., Macharashvili A.A., Struchkov Yu.T., Shipov A.G., Baukov Yu.I. // J. Struct. Chem. 1994. Vol. 35. Т. 1. Р. 91. doi 10.1007/BF02578506

- 44. Лазарева Н.Ф., Беляева В.В., Лазарев И.М. // Изв. AH. Сер. хим. 2015. № 9. С. 2265; Lazareva N.F., Belyaeva V.V., Lazarev I.M. // Russ. Chem. Bull. 2015. Vol. 64. N 9. P. 2265. doi 10.1007/s11172-015-1150-9
- 45. *Soldatenko A.S., Sterkhova I.V., Lazareva N.F.* // J. Organometal. Chem. 2024. Vol. 1018. 123286. doi 10.1016/j.jorganchem.2024.123286.
- 46. *Kano N., Kikuchi A., Kawashima T. //* Chem. Commun. 2001. N 48. P.2096. doi 10.1039/b106501g
- 47. Кембриджский банк структурных данных. https://www.ccdc.cam.ac.uk
- 48. *Shankar R., Sharma A., Jangir B., Chaudhary M., Kociok-KoËhn G.* // New J. Chem. 2019. Vol. 43. N 2. P. 813. doi 10.1039/c8nj04223c
- 49. Armarego W.L.F., Chai C.L.L., Purification of Laboratory Chemicals. Butterworth-Heinemann: Elsevier, 2009. 752p.
- 50. Sheldrick G.M. // Acta Crystallogr. (D). 2008. Vol. 64. P. 112. doi 10.1107/S0108767307043930

1,1,3,3-Tetraphenyl-1,3-bis(N-methylacetamidomethyl)-1,3-disiloxane

N. F. Lazareva^{1,*}, I. V. Sterkhova¹, and I. M. Lazarev¹

¹ A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia

*e-mail: nataly lazareva@irioch.irk.ru

Received August 8, 2024; revised September 3, 2024; accepted September 5, 2024

1,1,3,3-Tetraphenyl-1,3-bis(N-methylacetamidomethyl)-1,3-disiloxane is formed as a result of mild hydrolysis N-[chloro(diphenyl)silyl]methyl-N-methylacetamide. Its structure was studied by NMR spectroscopy and X-ray diffraction analysis. This is the first example of a neutral (O–Si) chelate siloxane with the coordination unit C=O \rightarrow SiC₃OSi.

Keywords: *N*-[chloro(diphenyl)silyl]methyl-*N*-methylacetamide, hydrolysis, 1,1,3,3-tetraphenyl-1,3-bis(*N*-methylacetamidomethyl)-1,3-disiloxane, X-ray diffraction