LAYERED DOUBLE HYDROXIDE OF Zn AND AI MODIFIED BY [Fe(CN)6]4−-ANIONS FOR THE SELECTIVE REMOVAL OF 137Cs FROM MODEL SOLUTIONS OF LIQUID RADIOACTIVE WASTE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Layered double hydroxides (LDH) have proven themselves as highly effective sorbents of heavy metals and radionuclides. In particular, modification of LDH with ferrocyanide ions is proposed for extraction of cesium-137. However, sorption-selective characteristics of modified LDH under conditions of extraction of cesium radionuclides from model and real solutions of liquid radioactive waste (LRW) remain unexplored to date. In this work, Zn-Al-LDH was obtained by direct coprecipitation with subsequent in situ intercalation of ferrocyanide anions into the interlayer space to achieve selectivity to cesium. In this work, adsorption kinetics was studied with obtaining the corresponding isotherms, the theoretical maximum sorption capacity is 201 mg/g, the experimentally obtained value is 197 mg/g. The effect of interfering ions on the adsorption of 137Cs was also studied and the distribution coefficients Kd(137Cs) were determined: 4838 and 1763 ml/g under conditions of model solutions of low and moderate salinity, respectively, and 3259 ml/g in seawater. The resulting composite material demonstrates high potential for the selective extraction of cesium radionuclides from aqueous solutions of varying mineralization.

作者简介

V. Rastorguev

Far Eastern Federal University

Email: rastorguev.vl@dvfu.ru
Vladivostok, Russia

N. Ivanov

Far Eastern Federal University; Sakhalin State University

Vladivostok, Russia; Yuzhno- Sakhalinsk, Russia

O. Shichalin

Far Eastern Federal University; Sakhalin State University

Vladivostok, Russia; Yuzhno- Sakhalinsk, Russia

V. Mayorov

Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, Russia

A. Karabtsov

Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, Russia

K. Barkhudarov

Far Eastern Federal University; Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, Russia; Vladivostok, Russia

A. Zaikova

Far Eastern Federal University

Vladivostok, Russia

A. Shkuratov

Far Eastern Federal University

Vladivostok, Russia

V. Kaptakov

Institute of Physical Chemistry and Electrochemistry named after. A.N. Frumkin RAS

Moscow, Russia

A. Fedorets

Far Eastern Federal University

Vladivostok, Russia

E. Papynov

Far Eastern Federal University

Vladivostok, Russia

参考

  1. Nekrasova N.A., Milyutin V.V., Kaptakov V.O. et al. // Inorganics (Basel). 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
  2. Liu H., Tong L., Su M. et al. // Science of the Total Environment. 2023. V. 869. P. 161664. https://doi.org/10.1016/j.scitotenv.2023.161664
  3. Milyutin V.V., Nekrasova N.A., Kaptakov V.O. et al. // Adsorption. 2023. V. 29. № 5–6. P. 323. https://doi.org/10.1007/s10450-023-00407-w
  4. Ivanets A., Shashkova I., Kitikova N. et al. // J. Clean. Prod. 2022. V. 376. P. 134104. https://doi.org/10.1016/j.jclepro.2022.134104
  5. Li X., Xu G., Xia M. et al. // Chemosphere. 2022. V. 308. P. 136445. https://doi.org/10.1016/j.chemosphere.2022.136445
  6. Козлова Т.О., Хворостинин Е.Ю., Родионовна А.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1515. https://doi.org/10.31857/S0044457X23601207
  7. Britvin S.N., Gerasimova L.G., Ivanyuk G.Y. et al. // Theoretical Foundations of Chemical Engineering. 2016. V. 50. № 4. P. 598. https://doi.org/10.1134/S0040579516040072
  8. Milyutin V. V., Nekrasova N.A., Yanicheva N.Y. et al. // Radiochem. 2017. V. 59. № 1. P. 65. https://doi.org/10.1134/S1066362217010088
  9. Westesen A.M., Campbell E.L., Fiskum S.K. et al. // Separation Science and Technology (Philadelphia). 2022. V. 57. № 15. P. 2482. https://doi.org/10.1080/01496395.2022.2059378
  10. Marmaza P.A., Ivanov N.P., Kaptakov V.O. et al. // Russian Journal of Inorganic Chemistry. 2025. V. 70. № 3. P. 355. https://doi.org/10.1134/S0036023625600224
  11. Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. физ. химии. 2016. Т. 90. № 10. С. 1534. https://doi.org/10.7868/s0044453716100125
  12. El-Naggar I.M., Ibrahim G.M., El-Kady E.A. // Advances in Chemical Engineering and Science. 2012. V. 02. Art. 01. https://doi.org/10.4236/aces.2012.21021
  13. Ke Y., Li Y., Zhu L. et al. // SN Appl. Sci. 2020. V. 2. Art. 522. https://doi.org/10.1007/s42452-020-2337-8
  14. Semenishchev V.S., Voronina A. V., Gupta D.K. // J. Radioanal. Nucl. Chem. 2019. V. 321. № 1. https://doi.org/10.1007/s10967-019-06555-0
  15. Kang J., Cintron-Colon F., Kim H. et al. // Chemical Engineering Journal. 2022. V. 430. P. 133. https://doi.org/10.1016/j.cej.2021.132788
  16. Theiss F.L., Ayoko G.A., Frost R.L. // Materials Science and Engineering C. 2017. V. 77. P. 1228. https://doi.org/10.1016/j.msec.2017.03.284
  17. Kang J., Levitskaia T.G., Park S. et al. // Chemical Engineering Journal. 2020. V. 380. P. 122408. https://doi.org/10.1016/j.cej.2019.122408
  18. Celik A., Li D., Quintero M.A. et al. // Environ. Sci. Technol. 2022. V. 56. № 12. P. 8590. https://doi.org/10.1021/acs.est.1c08766
  19. Mayordomo N., Rodríguez D.M., Rossberg A. et al. // Chemical Engineering Journal. 2021. V. 408. P. 127265. https://doi.org/10.1016/j.cej.2020.127265
  20. Daniels N., Franzen C., Murphy G.L. et al. // Appl. Clay. Sci. 2019. V. 176. P. 1. https://doi.org/10.1016/j.clay.2019.04.006
  21. Tang Y., Zhang X., Li X. et al. // Sep. Purif. Technol. 2023. V. 322. P. 124305. https://doi.org/10.1016/j.seppur.2023.124305
  22. Meguellati Z., Ghemmit N., Brahimi R. // Water. Air Soil Pollut. 2023. V. 234. P. 621. https://doi.org/10.1007/s11270-023-06565-5
  23. Liu S., Li M., Tang Y. et al. // J. Alloys. Compd. 2023. V. 959. P. 170528 https://doi.org/10.1016/j.jallcom.2023.170528
  24. Kulyukhin S.A., Krasavina E.P., Rumer I.A. // Radiochemistry. 2015. V. 57. № 1. P. 69. https://doi.org/10.1134/S1066362215010105
  25. Chen S., Yang X., Wang Z. et al. // J. Hazard. Mater. 2021. V. 410. P. 124608. https://doi.org/10.1016/j.jhazmat.2020.124608
  26. Kim J., Kang J., Um W. // J. Environ. Chem. Eng. 2022. V. 10. № 3.P. 107477. https://doi.org/10.1016/j.jece.2022.107477
  27. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. et al. // Radiochemistry. 2018. V. 60. № 4. P. 395. https://doi.org/10.1134/S1066362218040082
  28. Daniel S., Thomas S. // Layered Double Hydroxide Polymer Nanocomposites. 2020. P. 1. https://doi.org/10.1016/B978-0-08-101903-0.00001-5
  29. Милютин В.В., Некрасова Н.А., Каптаков В.О. // Радиоактивные отходы. 2020. Т. 4. № 13. С. 80. https://doi.org/10.25283/2587-9707-2020-4-80-89

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).