АКВАКОМПЛЕКСЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (Ce3+, Eu3+, Gd3+ и Yb3+) С клозо-ДОДЕКАБОРАТНЫМ АНИОНОМ: СИНТЕЗ, СТРОЕНИЕ, СВОЙСТВА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нейтрализацией раствора (H3O)2[B12H12] оксидами редкоземельных элементов (РЗЭ) M2O3(M = Eu3+, Gd3+, Yb3+) и CeO2 получены аквакомплексы [M(H2O)8]2[B12H12]3 ⋅ 15H2O (M = Eu3+, Gd3+, Yb3+) и [Ce(H2O)9]2[B12H12]3 · 15H2O, стабилизированные клозо-додекаборатным анионом. Строение [Eu(H2O)8]2[B12H12]3 ⋅ 15H2O и [Ce(H2O)9]2[B12H12]3 · 15H2O определено методом рентгеноструктурного анализа. Установлено, что реакция в системе СеО2/(H3O)2[B12H12] сопровождается окислительно-восстановительным превращением Ce4+ → Ce3+, в то время как для систем M2O3 (M = Eu3+, Gd3+, Yb3+)/(H3O)2[B12H12] наблюдается стабилизация степени окисления соответствующего РЗЭ. Изучены люминесцентные свойства [Ce(H2O)9]2[B12H12]3 · 15H2O. Показано, что данное соединение излучает в ближней ультрафиолетовой области с максимумом эмиссии при 370 нм.

Об авторах

И. И Мышлецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: korolencko0110@yandex.ru
Москва, Россия

Е. А Малинина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

А. С Кубасов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Г. А Бузанов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Л. В Гоева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

С. Е Никифорова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

А. Г Сон

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Н. Т Кузнецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Список литературы

  1. Titova S.A., Kruglova M.P., Stupin V.A. et al. // Pharmaceuticals. 2025. V. 18. P. 154. https://doi.org/10.3390/ph18020154
  2. Zheng A.L.T., Sinin A.E., Jin W.T. et al. // Int. J. Environ. Sci. Technol. 2025. V. 22. P. 7247. https://doi.org/10.1007/s13762-024-06203-5
  3. An J., Qu Y., Guofeng Wang // Inorg. Chem. Front. 2024. V. 11. P. 11. https://doi.org/10.1039/D3QI02006A
  4. Rocha R.A., Alexandrov K., Scott C. // Microb. Biotechnol. 2024. V. 17. P. e14503. https://doi.org/10.1111/1751-7915.14503
  5. Yin X., Deng L., Ruan L. et al. // Materials. 2023. V. 16. P. 3568. https://doi.org/10.3390/ma16093568
  6. Li J., Kim J.S., Fan J. et al. // Chem. Soc. Rev. 2025. V. 54. P. 4104. https://doi.org/10.1039/D4CS01288G
  7. Kawasaki R., Miura Y., Kono N. et al. // ChemMedChem. 2024. V. 19. P. e202400323. https://doi.org/10.1002/cmdc.202400323
  8. Cebula J., Fink K., Boratyński J. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214940. https://doi.org/10.1016/j.ccr.2022.214940
  9. Avdeeva V.V., Nikiforova S.E., Malinina E.A. et al. // Materials. 2023. V. 16. P. 6099. https://doi.org/10.3390/ma16186099
  10. Канаева О.А., Кузнецов Н.Т. // Труды МИТХТ. 1972. Т. 2. С. 21.
  11. Tiritiris I., Schleid T. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 1353. https://doi.org/10.1002/zaac.200800073
  12. Malinina Е.А., Korolenko S.E., Kubasov A.S. et al. // J. Solid State Chem. 2021. V. 302. P. 122413. https://doi.org/10.1016/j.jssc.2021.122413
  13. White III J.P., Deng H., Boyd E.P. et al. // Inorg. Chem. 1994. V. 33. P. 1685. https://doi.org/10.1021/ic00086a019
  14. Yapryntsev A.D., Bykov A.Yu., Baranchikov A.E. et al. // Inorg. Chem. 2017. V. 56. P. 3421. https://doi.org/10.1021/acs.inorgchem.6b02948
  15. Akimov S.S., Matveev E.Yu., Kubasov A.S. et al. // Russ. Chem. Bull. 2013. V. 62. P. 1417. https://doi.org/10.1007/s11172-013-0204-0
  16. Ryabchikova M.N., Nelyubin A.V., Buzanov G.A. et al. // Polyhedron. 2025. V. 272. P. 117462. https://doi.org/10.1016/j.poly.2025.117462
  17. Greenwood N.N., Morris J.H. // Proc.Chem. Soc. 1963. V. 11. P. 338.
  18. Bruker, SAINT, v. 8.40A, Bruker AXS Inc., Madison, WI, 2019.
  19. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  20. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  21. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339 https://doi.org/10.1107/S002188980804272
  22. Inerbaev T.M., Han Y., Bekker T.B., Kilin D.S. // J. Phys. Chem. C. 2023. V. 127. P. 9213. https://doi.org/10.1021/acs.jpcc.2c08711
  23. Chen X., Huang X. // Prog. Mater. Sci. 2025. P. 101535. https://doi.org/10.1016/j.pmatsci.2025.101535
  24. Rittisut W., Wantana N., Butburee A. et al. // Radiat. Phys. Chem. 2021. V. 185. P. 109498. https://doi.org/10.1016/j.radphyschem.2021.109498
  25. Frolov M.P., Leonov S.O., Korostelin Yu.V. et al. // Opt. Mater. Express. 2022. V. 12. P. 4619. https://doi.org/10.1364/OME.472550
  26. Wen J., Wang Y., Jiang G. // Inorg. Chem. 2020. V. 59. P. 5170. https://doi.org/10.1021/acs.inorgchem.0c00406

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).