Взаимодействие термоактивированного гидроксида алюминия с водными растворами солей азотнокислого никеля и кобальта

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы процессы взаимодействия продукта центробежной термической активации гиббсита (ЦТА-ГБ) c водными растворами азотнокислого никеля или кобальта в широком диапазоне концентраций активных компонентов (15–50 мас. %). Методами рентгенофазового и термического анализа установлено, что продуктами синтеза являются слоистые двойные гидроксиды и псевдобемит. Взаимодействие ЦТА-ГБ в водной среде без никеля или кобальта приводит к образованию только псевдобемита. Влияние никеля в растворах выражается в полном отсутствии образования псевдобемитов. В случае кобальта формирование псевдобемитов происходит до его концентрации 30 мас. %, выше таковой (40, 50 мас. %) они также не образуются. Согласно результатам температурно-программированного восстановления водородом, продуктами термообработки при 350–850°С являются смешанные составы NiO/алюминат никеля и Co3O4/алюминат кобальта, превращение которых в шпинели типа NiAl2O4 и CoAl2O4 практически полностью происходит при 850°С, а их синтез на основе продуктов ЦТА-ГБ возможен без использования стадий классического соосаждения (золь-гель технологии).

Полный текст

Доступ закрыт

Об авторах

А. В. Жужгов

Институт катализа им. Г.К. Борескова СО РАН

Автор, ответственный за переписку.
Email: zhuzhgov@catalysis.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 5

Л. А. Исупова

Институт катализа им. Г.К. Борескова СО РАН

Email: zhuzhgov@catalysis.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 5

Список литературы

  1. Li F., Duan X. // Struct. Bond. 2006. V. 119. P. 193. https://doi.org/10.1007/430_007
  2. Tian Li., Huang K., Liu Y. et al. // J. Solid State Chem. 2011. V. 184. P. 2961. https://doi.org/10.1016/j.jssc.2011.08.026
  3. Meng Xi., Yang Yu., Chen Li. et al. // ACS Catal. 2019. V. 9. P. 4226. https://doi.org/10.1021/acscatal.9b00238
  4. Veronesi P., Leonelli C., Bondioli F. // Technologies. 2017. V. 5. P. 42. https://doi.org/10.3390/technologies5030042
  5. Deng Li., Cai J., Chen Hu. et al. // Catal. Commun. 2019. V. 122. P. 24. https://doi.org/10.1016/j.catcom.2019.01.014
  6. Tang Y., Liu Y., Yu S. et al. // J. Power Sources. 2014. V. 256. P. 160. https://doi.org/10.1016/j.jpowsour.2014.01.064
  7. Khodakov A.Y., Chu W., Fongarland P. et al. // Chem. Rev. 2007. V. 107. P. 1692. https://doi.org/10.1021/cr050972v
  8. Jacobs G., Das T.K., Zhang Y. et al. // Appl. Catal., A: General. 2002. V. 233. P. 263. https://doi.org/10.1016/S0926-860X(02)00195-3
  9. Narayanan S., Unnikrishnan R. // J. Chem. Soc., Faraday Trans. 1998. V. 94. P. 1123. https://doi.org/10.1039/A708124C
  10. Gandia L.M., Montes M. // J. Mol. Catal. 1994. V. 94. P. 347. https://doi.org/10.1016/0304-5102(94)00154-5
  11. Ragupathi С., Vijaya J.D., Narayanan S. et al. // Ceram. Int. 2015. V. 41. P. 2069. https://doi.org/10.1016/j.ceramint.2014.10.002
  12. Choya A., Rivas B., Gutiérrez-Ortiz J.I. et al. // Chem. Eng. Transact. 2023. V. 99. P. 1. https://doi.org/10.3303/CET2399090
  13. Moraz-Lazaro J.P., Blanco O., Rodriguez-Betancourtt V.M. et al. // Sens. Actuators, B: Chemical. 2016. V. 226. P. 518. https://doi.org/10.1016/j.snb.2015.12.013
  14. Yang He., Goldbach A., Shen W. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1360. https://doi.org/10.1016/j.ijhydene.2023.07.278
  15. Das T., Kweon S., Nah In. et al. // Cryogenics. 2015. V. 69. P. 36. https://doi.org/10.1016/j.cryogenics.2015.03.003
  16. Жужгов А.В., Криворучко О.П., Исупова Л.А. и др. // Катализ промышленности. 2017. Т. 17. № 5. С. 346. https://doi.org/10.18412/1816-0387-2017-5-346-358
  17. Буянов Р.А., Пармон В.Н. // Катализ в промышленности. 2017. Т. 17. № 5. С. 390. https://doi.org/10.18412/1816-0387-2017-5-390-398
  18. Жужгов А.В., Криворучко О.П., Исупова Л.А. // Журн. физ. химии. 2020. Т. 94. № 1. С. 50. https://doi.org/10.31857/S0044453719120379
  19. Aasadni M., Mehrpooya M., Ghorbani B. // J. Cleaner Production 2021. V. 278. P. 123872. https://doi.org/10.1016/j.jclepro.2020.123872
  20. Боресков Г.К., Слинько М.Г. // Химическая промышленность. 1956. № 2. С. 69.
  21. Wang C., Lui S., Lui L. et al. // J. Mater. Chem. Phys. 2006. V. 96. P. 361. https://doi.org/10.1016/j.matchemphys.2005.07.066
  22. Casado P.G., Rasines I. // J. Solid State Chem. 1984. V. 52. P. 187. https://doi.org/10.1016/0022-4596(84)90190-7
  23. Li W., Li J., Guo J. // J. Eur. Ceram. Soc. 2003. V. 23. P. 2289. https://doi.org/10.1016/S0955-2219(03)00081-5
  24. Криворучко О.П., Тарабан Е.А., Буянов Р.А. // Журн. неорган. химии. 1987. Т. 32. № 3. С. 551.
  25. Агафонов А.В., Шибаева В.Д., Краев А.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 4. https://doi.org/10.31857/S0044457X22600967
  26. Bai C.S., Soled S., Dwight K. // J. Solid State Chem. 1991. V. 91. P. 148. https://doi.org/10.1016/0022-4596(91)90068-S
  27. Небыков Д.Н., Панов А.О., Разваляева А.В. и др. // Журн. общ. химии. 2023. Т. 93. № 8. С. 1151. https://doi.org/10.31857/S0044460X23080012
  28. Афинеевский А.В., Прозоров Д.А., Никитин К.А. и др. // Журн. общ. химии. 2021. Т. 91. № 3. С. 439. https://doi.org/ 10.31857/S0044460X21030100
  29. Fogg A.M., Williams G.R., Chester R. et al. // J. Mater. Chem. 2004. V. 14. P. 2369. http://doi.org/10.1039/B409027F
  30. Williams G.R., Moorhouse S.J., Timothy J.P. et al. // Dalton Trans. 2011. V. 40. P. 6012. https://doi.org/10.1039/c0dt01790f
  31. Криворучко О.П., Буянов Р.А., Парамзин С.М. и др. // Кинетика и катализ. 1988. Т. 29. № 1. С. 252.
  32. Буянов Р.А., Криворучко О.П., Золотовский Б.П. // Изв. СО АН СССР. Сер. хим. наук. 1986. Вып. 4. № 11. С. 39.
  33. Ingram-Jones V.J., Davies R.C.T., Southern J.C. et al. // J. Mater. Chem. 1996. V. 6. P. 73. https://doi.org/10.1039/JM9960600073
  34. Танашев Ю.Ю., Мороз Э.М., Исупова Л.А. и др. // Кинетика и катализ. 2007. Т. 48. № 1. С. 161.
  35. Жужгов А.В., Кругляков В.Ю., Супрун Е.А. и др. // Журн. прикл. химии. 2022. Т. 95. № 4. С. 450. https://doi.org/10.31857/S0044461822040053
  36. Zhuzhgov A.V., Isupova L.A., Suprun E.A. et al. // Chem. Eng. 2023. V. 7. № 4. P. 71. https://doi.org/10.3390/chemengineering7040071
  37. Ivanova Y., Zhuzhgov A., Isupova L. // Inorg. Chem. Commun. 2024. V. 162. P. 1. https://doi.org/10.1016/j.inoche.2024.112287
  38. Федотов M.A., Тарабан Е.А., Криворучко О.П. и др. // Журн. неорган. химии. 1990. Т. 35. № 5. С. 1226.
  39. Буянов Р.A., Криворучко О.П. // Кинетика и катализ. 1976. Т. 17. № 3. С. 765.
  40. Исупова Л.А., Иванова Ю.А. // Докл. РАН. 2023. Т. 511. № 1. С. 60. https://doi.org/10.31857/S2686953522600453
  41. Lin H.K., Wang C.B., Chiu H.C. et al. // Catal. Lett. 2003. V. 86. P. 63. https://doi.org/10.1023/A:1022659025068
  42. Shafiee P., Alavi S.M., Rezaei M. // Res. Chem. Intermed. 2022. V. 48. P. 1923. https://doi.org/10.1007/s11164-022-04700-1
  43. He Z., Wang Xi., Liu R. et al. // Appl. Petrochem. Res. 2016. V. 6. P. 235. https://doi.org/10.1007/s13203-016-0160-3
  44. Hu D., Gao G., Ping Y. et al. // Ind. Eng. Chem. Res. 2012. V. 51. P. 4875. https://doi.org/10.1021/ie300049f
  45. Gil-Calvo M., Jiménez-González C., de Rivas B. et al. // Appl. Catal., B: Environmental. 2017. V. 209. P. 128. https://doi.org/10.1016/j.apcatb.2017.02.063

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Порошковые дифрактограммы исходного ЦТА-ГБ (а) и продуктов его взаимодействия с Ni2+ и Co2+: б – 15%Ni-Al-110 (1), 30%Ni-Al-110 (2), 40%Ni-Al-110 (3); в – 15%Co-Al-110 (1), 30%Co-Al-110 (2), 40%Co-Al-110 (3); г – 30%Ni-Al-110 (1), 30%Co-Al-110 (2) после стадии отмывки и сушки при 110°C; д – продукт взаимодействия ЦТА-ГБ в водной среде без катионов никеля или кобальта.

Скачать (119KB)
3. Рис. 2. Порошковые дифрактограммы образцов после термообработки: а – 30%Ni-Al-350 (1), 30%Ni-Al-550 (2), 30%Ni-Al-850 (3); б – 30%Co-Al-350 (1), 30%Co-Al-550 (2), 30%Co-Al-850 (3).

Скачать (56KB)
4. Рис. 3. Данные термического анализа исходного ГБ (а), ЦТА-ГБ после термоактивации (б) и продукта взаимодействия ЦТА-ГБ в водной среде без катионов никеля или кобальта (в).

Скачать (81KB)
5. Рис. 4. Данные термического анализа: a – 15%Ni-Al-110; б – 15%Co-Al-110; в – 20%Ni-Al-110; г – 20%Сo-Al-110; д – 30%Ni-Al-110; е – 30%Co-Al-110; ж – 40%Ni-Al-110; з – 40%Co-Al-110; и – 50%Ni-Al-110; к – 50%Co-Al-110.

Скачать (141KB)
6. Рис. 5. Кривые ТПВ-H2: a – 30%Сo-Al-350 (1), 30%Сo-Al-550 (2), 30%Сo-Al-850 (3); б – 30%Ni-Al-350 (1), 30%Ni-Al-550 (2).

Скачать (75KB)
7. Рис. 6. Блок-схема основных технологических стадий синтеза сложных систем Ni-Al или Co-Al классическим методом соосаждения (а) и с использованием продукта ЦТА-ГБ (б).

Скачать (150KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».