Синтез и антибактериальные свойства нанокомпозиций оксида алюминия и серебра

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Установлена возможность получения дисперсных нанокомпозиций на основе оксида алюминия и металлического серебра. Композиции могут быть получены в одном реакционном цикле с использованием прекурсоров в виде водных растворов, содержащих нитраты алюминия и серебра, а также органический компонент: поливиниловый спирт, поливинилпирролидон, глицин, глицерин. Электронно-микроскопические и рентгеновские исследования показали, что наночастицы серебра распределены на поверхности агрегатов оксида алюминия, содержащих фазы гидратированного оксида алюминия, α-Al2O3, низкотемпературных модификаций оксида алюминия. Полученные образцы композиций обладают приемлемыми для практического применения антибактериальными свойствами. Наилучшие характеристики в этом плане при проведении экспериментов на культурах кишечной палочки (Escherichia coli) имеют образцы, полученные из прекурсоров с поливиниловым спиртом и поливинилпирролидоном, подвергнутые окончательной термообработке при температуре 850°С в течение 8 ч.

Полный текст

Доступ закрыт

Об авторах

А. А. Остроушко

Уральский федеральный университет

Автор, ответственный за переписку.
Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002

А. Е. Пермякова

Уральский федеральный университет

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002

Т. Ю. Жуланова

Уральский федеральный университет; Институт высокотемпературной электрохимии УрО РАН

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002; Екатеринбург, 620066

А. А. Ермошин

Уральский федеральный университет

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002

А. А. Меленцова

Институт химии твердого тела УрО РАН

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620108

Р. Р. Мансуров

Уральский федеральный университет

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002

Д. К. Кузнецов

Уральский федеральный университет

Email: alexander.ostroushko@urfu.ru
Россия, Екатеринбург, 620002

Список литературы

  1. Gabrielyan L.S., Trchounian A.A. // J. Belarus. State University. Biology. 2020. V. 3. P. 64. https://doi.org/10.33581/2521-1722-2020-3-64-71
  2. Meleshko А.A., Afinogenova A.G., Afinogenov G.E. et al. // Russ. J. Infection Immunity. 2020. V. 10. № 4. P. 639. https://doi.org/10.15789/2220-7619-AIA-1512
  3. Dorovskikh S.I., Vikulova E.S., Sergeevichev D.S. et al. // Coatings. 2023. V. 13. P. 1269. https://doi.org/10.3390/coatings13071269
  4. Smolle M.A., Bergovec M., Scheipl S. et al. // Scient. Rep. 2022. V. 12. P. 13041. https://doi.org/10.1038/s41598-022-16707-0
  5. Sergeevichev D.S., Dorovskikh S.I., Vikulova E.S. et al. // Int. J. Mol. Sci. 2024. V. 25. № 2. P. 1100. https://doi.org/10.3390/ijms25021100
  6. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. // Успехи химии. 2008. Т. 77. № 3. С. 242.
  7. Степанов А.Л. // Журн. техн. физ. 2004. Т. 74. № 2. С. 1.
  8. Спешилов И.О., Вартанян М.А., Ваграмян Т.А. // Успехи в химии и химической технологии. 2016. Т. 30. № 3. С. 59.
  9. Закатилова Е.И., Уянга Т., Меркушкин А.О., Обручиков А.В. // Успехи в химии и химической технологии. 2014. Т. 28. № 6. С. 95.
  10. Максимов Г.В., Сазонтова Т.Г., Коваленко С.С. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2015. Т. 56. № 3. С. 158.
  11. Ostroushko A.A., Russkikh O.V. // Nanosyst.: Phys. Chem. Math. 2017. V. 8. № 4. P. 476. https://doi.org/10.17586/2220-8054-2017-8-4-476-502
  12. Остроушко А.А., Максимчук Т.Ю., Пермякова А.Е., Русских О.В. // Журн. неорган. химии. Т. 67. № 6. С. 727. https://doi.org/10.31857/S0044457X22060186
  13. Остроушко А.А., Адамова Л.В., Ковеза Е.В. и др. // Журн. неорган. химии. 2018. Т. 92. № 3. С. 423. https://doi.org/10.7868/S0044453718030214
  14. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  15. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 12. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
  16. Aruna S.T. Solution combustion synthesis. Concise Encyclopedia of Self Propagating High Temperature Synthesis. 2017. P. 344.
  17. Popkov V.I., Almjasheva O.V., Nevedomskyi V.N. et al. // Ceram. Int. 2018. V. 44. № 17. P. 20906. https://doi.org/10.1016/j.ceramint.2018.08.097
  18. Martinson K.D., Belyak V.E., Sakhno D.D. et al. // J. Alloys Compd. 2022. V. 894. P. 162554. https://doi.org/10.1016/j.jallcom.2021.162554
  19. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. // Ceram. Int. 2021. V. 47. № 15. P. 21905. https://doi.org/10.1016/j.ceramint.2021.04.20
  20. Ломанова Н.А., Томкович М.В. Данилович Д.П. и др. // Неорган. материалы. 2020. Т. 56. № 12. С. 1342. https://doi.org/10.31857/S0002337X20120118
  21. Popkov V.I., Almjasheva O.V., Semenova A.S. et al. // J. Mater. Sci: Materials in Electronics. 2017. V. 28. № 10. P. 7163. https://doi.org/10.1007/s10854-017-6676-1
  22. Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosyst.: Phys. Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
  23. Zang S., Chang S., Shahzad M.B. et al. // Rev. Adv. Mater. Sci. 2019. V. 58. P. 82. https://doi.org/10.1515/rams-2019-0010
  24. Wilczewska A.Z., Niemirowicz K., Markiewicz K.H. et al. // Pharmacol. Rep. 2012. V. 64. № 5. P. 1020. https://doi.org/10.1016/S1734-1140(12)70901-5
  25. Kapoor S., Hegde R., Bhattacharyya A.J. // J. Control. Release. 2009. V. 140. № 1. P. 34. https://doi.org/10.1016/j.jconrel.2009.07.015
  26. Das S.K., Kapoor S., Yamada H. et al. // Micropor. Mesopor. Mat. 2009. V. 118. № 1–3. P. 267. https://doi.org/10.1016/j.micromeso.2008.08.042
  27. Добровольский Д.С., Беловощев Н.А., Насырова Л.А. и др. // Успехи в химии и химической технологии. 2017. Т. 31. № 13. С. 31.
  28. Fedoročková A., Sučik G., Plešingerová B. et al. // RSC Adv. 2020. V. 10. P. 32423. https://doi.org/10.1039/D0RA06544G
  29. Лямина Г.В., Илела А.Э., Двилис Э.С. и др. // Бутлеровские чтения. 2013. Т. 33. № 3. С. 55.
  30. Остроушко А.А., Вылков А.И., Жуланова Т.Ю. и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. Т. 15. С. 799. https://doi.org/10.26456/pcascnn/2023.15.799
  31. Петина Л.П., Левинтер М.Е. // Изв. ВУЗов. Химия и хим. технология. 1980. Т. 23. № 4. С. 919.
  32. Gates B.K., Katzer J.R., Schuit G.C.A. Chemistry of Catalytic Processes. N.Y.: McCraw-Hill Book Company, 1979. 464 p. Гейтс Б., Кетцир Дж., Шуйт Д. Химия каталитических процессов. М.: Мир, 1981. 342 с.
  33. Ostroushko A.A. // Inorg. Mater. 2004. V. 40. № 3. P. 259. https://doi.org/10.1023/B:INMA.0000020524.35838.de
  34. Галимзянова Р.Ю. Современные композиционные материалы в производстве медицинской техники. Казань, 2021. 89 с.
  35. Липпенс Б.К., Стеггерда И.И. Активная окись алюминия. Строение и свойства адсорбентов и катализаторов / Под ред. Линсена Б.Н. М.: Мир, 1973. 288 с.
  36. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М., 2010. 288 с.
  37. Бакшеев Е.О. Разработка технологии производства трехмаршрутных катализаторов с высокой каталитической активностью и устойчивостью к термической дезактивации. Дис. … канд. техн. наук. Екатеринбург, 2023. https://elar.urfu.ru/bitstream/10995/128095/1/urfu2579_d.pdf; urfu2579_d.pdf.
  38. Алешина Л.А., Сидорова О.В., Струневская А.Л. // Тр. Кольского НЦ РАН. 2018. Т. 9. № 2. С. 498. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.498-502
  39. Коровин М.С., Фоменко А.Н., Бакина О.В., Лернер М.И. // Сибирский онкологический журнал. 2016. Т. 15. № 6. С. 35. https://doi.org/10.21294/1814-4861-2016-15-6-35-41
  40. Привольнев В.В., Забросаев В.С., Даниленков Н.В. // Вестн. Смоленской гос. мед. академии. 2015. T. 14. № 3. C. 85.
  41. Зайцева Н.В., Землянова М.А., Степанков М.С., Игнатова А.М. // Экология человека. 2018. № 5. С. 9.
  42. Thomas J., Periakaruppan P., Thomas V. et al. // RSC Adv. 2018. V. 8. P. 41288. https://doi.org/10.1039/C8RA08893D
  43. Zhang Y., Liu J., Kang Y.S. et al. // Nanoscale. 2022. V. 14. P. 11909. https://doi.org/10.1039/D2NR02665A
  44. Роженцев Д.А., Мансуров Р.Р., Ткачев Н.К. и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. Т. 13. С. 919. https://doi.org/10.26456/pcascnn/2021.13.919

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. СЭМ-изображения образцов Al2O3–Ag, синтезированных из прекурсоров с различными органическими компонентами: а, б – ПВС, 650oС; в, г – ПВП, 650oС; д, е – глицин, 650oС; ж, з – глицерин, 650oС.

3. Рис. 2. СЭМ-изображения образцов Al2O3–Ag, синтезированных из прекурсоров с различными органическими компонентами: а, б – ПВС, 850oС; в, г – ПВП, 850oС; д, е – глицин, 850oС; ж, з – глицерин, 850oС.

4. Рис. 3. Результаты энергодисперсионного анализа образца Al2O3–Ag, ПВП, 650oС: а – CЭМ-изображение; карты распределения химических элементов: б – Al, в – Ag, г – O; д – энергодисперсионный спектр.

5. Рис. 4. Результаты энергодисперсионного анализа образца Al2O3–Ag, глицерин, 850oС: а – СЭМ-изображение; карты распределения химических элементов: б – Al, в – Ag, г – O; д – энергодисперсионный спектр.

6. Рис. 5. Рентгенограммы образцов Al2O3–Ag, синтезированных из прекурсоров с различными органическими компонентами: а – ПВС, 650оС; б – ПВП, 650оС; в – ПВС, 850оС; г – ПВП, 850оС (штрихдиаграммами обозначены фазы металлического серебра (COD ID: 1100136) (черный), α-Al2O3 (COD ID: 1000017) (синий)).

Скачать (270KB)
7. Рис. 6. Концентрационные зависимости процентного отношения количества колониеобразующих единиц в исследуемых образцах, синтезированных с различными органическими компонентами, к количеству колониеобразующих единиц в контрольном опыте.

Скачать (146KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».