Биостекло 45S5, легированое Bi2O3, для медицинского применения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнено допирование биостекла Bioglass 45S5 оксидом висмута в концентрации до 40 мас. %. Аморфная природа синтезированных стекол подтверждена рентгенофазовым анализом. Исследовано влияние Bi2O3 на свойства биостекла. В ряду образцов, содержащих от 0 до 40 мас. % оксида висмута, их характеристики изменяются следующим образом: значения pH модельной среды при выщелачивании стекол снижаются от 7.84 до 7.46; рентгеноконтрастность увеличивается от 1150 HU до значений, превышающих 11000 HU; химическая деградация падает от 1.299 до 0.424%; биоактивность снижается в диапазоне 0–10 мас. % и отсутствует в диапазоне 20–40 мас. % Bi2O3. Стекла, содержащие до 10 мас. % Bi2O3, могут найти применение в восстановительной хирургии. Они обладают рентгеноконтрастными и биоактивными свойствами. Стекла, содержащие 20–40 мас. % Bi2O3, обладают высокой рентгеноконтрастностью, химической стойкостью, незначительным влиянием на pH среды при деградации. Они могут быть перспективны в качестве радиомодификаторов при лечении злокачественных новообразований методом лучевой терапии.

Полный текст

Доступ закрыт

Об авторах

Д. Н. Грищенко

Институт химии ДВО РАН

Автор, ответственный за переписку.
Email: grishchenko@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159

М. А. Медков

Институт химии ДВО РАН

Email: grishchenko@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159

Список литературы

  1. Hench L.L. // J. Mater. Sci: Mater. Med. 2006. V. 17. P. 967. https://doi.org/10.1007/s10856-006-0432-z
  2. Miguez-Pacheco V., Hench L.L., Boccaccini A.R. // Acta Biomater. 2015. V. 13. P. 1. https://doi.org/10.1016/j.actbio.2014.11.004
  3. Mazzoni E., Iaquinta M.-R., Lanzillotti C. et al. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 613787. https://doi.org/10.3389/fbioe.2021.613787
  4. Wang R., Li H., Sun H. // Encyclopedia of Environmental Health. 2019. P. 415. https://doi.org/10.1016/B978-0-12-409548-9.11870-6
  5. Shahbazi‐Gahrouei D., Choghazardi Y., Kazemzadeh A. et al. // IET Nanobiotechnol. 2023. V. 17. P. 302. https://doi.org/10.1049/nbt2.12134
  6. Thomas F., Bialek B., Hensel R. // J. Clin. Toxicol. 2011. V. 3. P. 4. https://doi.org/10.4172/2161-0495.S3-004
  7. Pazarçeviren A.E., Tahmasebifar A., Tezcaner A. et al. // Ceram. Int. 2018. V. 44. P. 3791. https://doi.org/10.1016/j.ceramint.2017.11.164
  8. Mohn D., Zehnder M., Imfeld T., Stark W.J. // Int. Endod. J. 2010. V. 43. P. 210. https://doi.org/10.1111/j.1365-2591.2009.01660.x
  9. Prasad S.S, Adarsh T., Anand A. et al. // J. Mater. Res. 2018. V. 33. P. 178. https://doi.org/10.1557/jmr.2017.442
  10. Wang L., Long N.J., Li L. et al. // Light Sci. Appl. 2018. V. 7. https://doi.org/10.1038/s41377-018-0007-z
  11. Du J., Ding H., Fu S. et al. // Front. Bioeng. Biotechnol. Sec. Nanobiotechnology. 2023. V. 10. P. 1098923. https://doi.org/10.3389/fbioe.2022.1098923
  12. Khatua C., Bodhak S., Kundu B., Balla V.K. // Materialia. 2018. V. 4. P. 361. https://doi.org/10.1016/j.mtla.2018.10.014
  13. Heid S., Stoessel P.R., Tauböck T.T. et al. // Biomed Glass. 2016. V. 2. P. 29. https://doi.org/10.1515/bglass-2016-0004/html
  14. Pazarçeviren A.E., Evis Z., Keskin D., Tezcaner A. // Biomed Mater. 2019. V. 14. P. 035018. https://doi.org/10.1088/1748-605X/ab007b
  15. Kokubo T., Takadama H. // Biomaterials. 2006. V. 27. P. 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
  16. Prasad S.S., Ratha I., Adarsh T. et al. // J. Mater. Res. 2018. V. 33. P. 178. https://doi.org/10.1557/jmr.2017.442
  17. Rabiee M., Nazparvar N., Azizian M. et al. // Ceram. Int. 2015. V. 41. P. 7241. https://doi.org/10.1016/j.ceramint.2015.02.140
  18. Misch C.E. // Int. J. Oral Implantol. 1990. V. 6. P. 23.
  19. Łaczka M., Stoch L., Górecki J. // J. Alloys Compd. 1992. V. 186. P. 279. https://doi.org/10.1016/0925-8388(92)90015-2
  20. Плотникова О.С., Грищенко Д.Н., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1219. https://doi.org/10.31857/S0044457X22090094
  21. Смагулова З.Ш., Макарушко С.Г., Садыкова Х.М. и др. // Здоровье. Медицинская экология. М.: Наука, 2009. Т. 39–40. С. 173.
  22. Silver I.A., Deas J., Erecińska M. // Biomaterials. 2001. V. 22. P. 175. https://doi.org/10.1016/S0142-9612(00)00173-3
  23. Cerruti M., Greenspan D., Powers K. // Biomaterials. 2005. V. 26. P. 1665. https://doi.org/10.1016/j.biomaterials.2004.07.009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дифрактограмма образца стекла, содержащего 40 мас. % Bi2O3

Скачать (48KB)
3. Рис. 2. Фотографии образцов, легированных Bi2O3, мас. %: 5 (а), 10 (б), 20 (в), 40 (г)

Скачать (224KB)
4. Рис. 3. Энергодисперсионные спектры стекол, легированных Bi2O3, мас. %: 5 (а), 10 (б), 20 (в), 40 (г)

Скачать (435KB)
5. Рис. 4. Микрофотография (а) и энергодисперсионный спектр (б) стекла, содержащего 5 мас. % Bi2O3, после пребывания в SBF-растворе в течение 7 сут

Скачать (394KB)
6. Рис. 5. Микрофотография (а) и энергодисперсионный спектр (б) стекла, содержащего 5 мас. % Bi2O3, после пребывания в SBF-растворе в течение 15 сут

Скачать (418KB)
7. Рис. 6. Микрофотография (а) и энергодисперсионный спектр (б) стекла, содержащего 10 мас. % Bi2O3, после пребывания в SBF-растворе в течение 15 сут

Скачать (505KB)
8. Рис. 7. Показатели pH модельного раствора при деградации стекла Bioglass 45S5, легированного Bi2O3, мас. %: 0 (1), 5 (2), 10 (3), 20 (4), 40 (5)

Скачать (78KB)
9. Рис. 8. Зависимость значений pH от химической деградации образца в модельном трис-растворе

Скачать (43KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».