Микроструктурная эволюция серебряных нанопроволок при их формировании полиольным методом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучен процесс микроструктурной эволюции серебряных нанопроволок при их формировании полиольным методом при температуре 170°С. С помощью УФ-Вид-спектрофотометрии показаны существенные изменения формы полосы поглощения, связанной с поверхностным плазмонным резонансом образующихся серебряных наноструктур. Результаты рентгенофазового анализа свидетельствуют о том, что все полученные наноструктуры имеют гранецентрированную кубическую решетку серебра. Изучено влияние длительности термообработки на отношение I(111)/I(200). Использование растровой электронной микроскопии позволило определить влияние условий синтеза на микроструктурные особенности формируемых частиц. В частности, через 45 мин с момента начала полиольного синтеза образуется материал, характеризующийся повышенной концентрацией более длинных нанопроволок (длиной до 25 мкм), а в единичных случаях встречаются одномерные структуры длиной до 70 мкм. Формируемые нанопроволоки характеризуются очень низким значением диаметра (35–40 нм). Установлено также время, когда интенсифицируется процесс разрушения серебряных нанопроволок и растет концентрация микростержней и нульмерных частиц. Предположено, что отдельные нанопроволоки в процессе термообработки реакционной системы соединяются боковыми гранями, что приводит к их рекристаллизации с образованием одномерных структур большего диаметра и их последующим разрушением из-за появляющихся дефектов.

Полный текст

Доступ закрыт

Об авторах

Н. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: n_simonenko@mail.ru
Россия, Москва

Т. Л. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: n_simonenko@mail.ru
Россия, Москва

Ф. Ю. Горобцов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: n_simonenko@mail.ru
Россия, Москва

П. В. Арсенов

Московский физико-технический институт (национальный исследовательский университет)

Email: n_simonenko@mail.ru
Россия, Долгопрудный

И. А. Волков

Московский физико-технический институт (национальный исследовательский университет)

Email: n_simonenko@mail.ru
Россия, Долгопрудный

Е. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: n_simonenko@mail.ru
Россия, Москва

Список литературы

  1. Guo C.F., Ren Z. // Mater. Today. 2015. V. 18. № 3. P. 143. https://doi.org/10.1016/j.mattod.2014.08.018
  2. Kim J., da Silva W.J., bin Mohd Yusoff A.R. et al. // Sci. Rep. 2016. V. 6. № 1. P. 19813. https://doi.org/10.1038/srep19813
  3. Yang C., Gu H., Lin W. et al. // Adv. Mater. 2011. V. 23. № 27. P. 3052. https://doi.org/10.1002/adma.201100530
  4. Zeng L., Zhao T.S., An L. // J. Mater. Chem. A. 2015. V. 3. № 4. P. 1410. https://doi.org/10.1039/C4TA05005C
  5. Du H., Pan Y., Zhang X. et al. // Nanoscale Adv. 2019. V. 1. № 1. P. 140. https://doi.org/10.1039/C8NA00110C
  6. Du B., Shen C., Wang T. et al. // Electrochim. Acta. 2023. V. 439. P. 141690. https://doi.org/10.1016/j.electacta.2022.141690
  7. Xie C., Xiao C., Fang J. et al. // Nano Energy. 2023. V. 107. P. 108153. https://doi.org/10.1016/j.nanoen.2022.108153
  8. Huš M., Hellman A. // ACS Catal. 2019. V. 9. № 2. P. 1183. https://doi.org/10.1021/acscatal.8b04512
  9. Liu Q., Zhang X.-G., Du Z.-Y. et al. // Sci. China Chem. 2023. V. 66. № 1. P. 259. https://doi.org/10.1007/s11426-022-1460-7
  10. Nair A.K., Thazhe veettil V., Kalarikkal N. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37731. https://doi.org/10.1038/srep37731
  11. Zhang Q., Jiang D., Xu C. et al. // Sens. Actuators, B: Chem. 2020. V. 320. P. 128325. https://doi.org/10.1016/j.snb.2020.128325
  12. Chu S., Nakkeeran K., Abobaker A.M. et al. // IEEE Sens. J. 2021. V. 21. № 1. P. 76. https://doi.org/10.1109/JSEN.2020.2981897
  13. Hao T., Wang S., Xu H. et al. // Chem. Eng. J. 2021. V. 426. P. 130840. https://doi.org/10.1016/j.cej.2021.130840
  14. Pan X.-T., Liu Y.-Y., Qian S.-Q. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 16. P. 19023. https://doi.org/10.1021/acsami.1c02332
  15. Simonenko N.P., Musaev A.G., Simonenko T.L. et al. // Nanomaterials. 2021. V. 12. № 1. P. 136. https://doi.org/10.3390/nano12010136
  16. Lee D.J., Oh Y., Hong J.-M. et al. // Sci. Rep. 2018. V. 8. № 1. P. 14170. https://doi.org/10.1038/s41598-018-32590-0
  17. Wang Y.H., Xiong N.N., Li Z.L. et al. // J. Mater. Sci.: Mater. Electron. 2015. V. 26. № 10. P. 7927. https://doi.org/10.1007/s10854-015-3446-9
  18. Jeong J.-M., Sohn M., Bang J. et al. // Sci. Rep. 2023. V. 13. № 1. P. 14354. https://doi.org/10.1038/s41598-023-41646-9
  19. Ha H., Amicucci C., Matteini P. et al. // Colloid Interface Sci. Commun. 2022. V. 50. P. 100663. https://doi.org/10.1016/j.colcom.2022.100663
  20. Xiao N., Chen Y., Weng W. et al. // Nanomaterials. 2022. V. 12. № 15. P. 2681. https://doi.org/10.3390/nano12152681
  21. Liao Q., Hou W., Zhang J. et al. // Coatings. 2022. V. 12. № 11. P. 1756. https://doi.org/10.3390/coatings12111756
  22. Jo H.-A., Jang H.-W., Hwang B.-Y. et al. // RSC Adv. 2016. V. 6. № 106. P. 104273. https://doi.org/10.1039/C6RA21349A
  23. da Silva R.R., Yang M., Choi S.-I. et al. // ACS Nano. 2016. V. 10. № 8. P. 7892. https://doi.org/10.1021/acsnano.6b03806
  24. Coskun S., Aksoy B., Unalan H.E. // Cryst. Growth Des. 2011. V. 11. № 11. P. 4963. https://doi.org/10.1021/cg200874g
  25. Jiu J., Araki T., Wang J. et al. // J. Mater. Chem. A. 2014. V. 2. № 18. P. 6326. https://doi.org/10.1039/C4TA00502C
  26. Fahad S., Yu H., Wang L. et al. // J. Mater. Sci. 2019. V. 54. № 2. P. 997. https://doi.org/10.1007/s10853-018-2994-9
  27. Zhang P., Wyman I., Hu J. et al. // Mater. Sci. Eng., B. 2017. V. 223. P. 1. https://doi.org/10.1016/j.mseb.2017.05.002
  28. Sun Y., Xia Y. // Adv. Mater. 2002. V. 14. № 11. P. 833. https://doi.org/10.1002/1521-4095(20020605) 14:11<833::AID-ADMA833>3.0.CO;2-K
  29. Sun Y., Yin Y., Mayers B.T. et al. // Chem. Mater. 2002. V. 14. № 11. P. 4736. https://doi.org/10.1021/cm020587b
  30. Sun Y., Gates B., Mayers B. et al. // Nano Lett. 2002. V. 2. № 2. P. 165. https://doi.org/10.1021/nl010093y
  31. Lu J., Liu D., Dai J. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. № 16. P. 15786. https://doi.org/10.1007/s10854-019-01964-z
  32. Bergin S.M., Chen Y.-H., Rathmell A.R. et al. // Nanoscale. 2012. V. 4. № 6. P. 1996. https://doi.org/10.1039/c2nr30126a
  33. Ashkarran A.A., Derakhshi M. // J. Clust. Sci. 2015. V. 26. № 5. P. 1901. https://doi.org/10.1007/s10876-015-0887-5
  34. Gebeyehu M.B., Chala T.F., Chang S.-Y. et al. // RSC Adv. 2017. V. 7. № 26. P. 16139. https://doi.org/10.1039/C7RA00238F
  35. Ma J., Zhan M. // RSC Adv. 2014. V. 4. № 40. P. 21060. https://doi.org/10.1039/c4ra00711e
  36. Guo Y., Hu Y., Luo X. et al. // Inorg. Chem. Commun. 2021. V. 128. P. 108558. https://doi.org/10.1016/j.inoche.2021.108558
  37. Lin J.-Y., Hsueh Y.-L., Huang J.-J. // J. Solid State Chem. 2014. V. 214. P. 2. https://doi.org/10.1016/j.jssc.2013.12.017
  38. Teymouri Z., Naji L., Fakharan Z. // Org. Electron. 2018. V. 62. P. 621. https://doi.org/10.1016/j.orgel.2018.06.039
  39. Hemmati S., Harris M.T., Barkey D.P. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/9341983
  40. Ran Y., He W., Wang K. et al. // Chem. Commun. 2014. V. 50. № 94. P. 14877. https://doi.org/10.1039/C4CC04698F
  41. Madeira A., Papanastasiou D.T., Toupance T. et al. // Nanoscale Adv. 2020. V. 2. № 9. P. 3804. https://doi.org/10.1039/D0NA00392A
  42. Sim H., Kim C., Bok S. et al. // Nanoscale. 2018. V. 10. № 25. P. 12087. https://doi.org/10.1039/C8NR02242A
  43. Araki T., Jiu J., Nogi M. et al. // Nano Res. 2014. V. 7. № 2. P. 236. https://doi.org/10.1007/s12274-013-0391-x
  44. Zhang B., Dang R., Cao Q. et al. // J. Nanomater. 2019. V. 2019. P. 1. https://doi.org/10.1155/2019/8646385
  45. Ding H., Zhang Y., Yang G. et al. // RSC Adv. 2016. V. 6. № 10. P. 8096. https://doi.org/10.1039/C5RA25474D
  46. Li Y., Li Y., Fan Z. et al. // ACS Omega. 2020. V. 5. № 29. P. 18458. https://doi.org/10.1021/acsomega.0c02156
  47. Bari B., Lee J., Jang T. et al. // J. Mater. Chem. A. 2016. V. 4. № 29. P. 11365. https://doi.org/10.1039/C6TA03308C
  48. Yang Z., Qian H., Chen H. et al. // J. Colloid Interface Sci. 2010. V. 352. № 2. P. 285. https://doi.org/10.1016/j.jcis.2010.08.072
  49. Shi Y., Fang J. // J. Phys. Chem. C. 2022. V. 126. № 46. P. 19866. https://doi.org/10.1021/acs.jpcc.2c05632
  50. Lee E.-J., Chang M.-H., Kim Y.-S. et al. // APL Mater. 2013. V. 1. № 4. P. 042118. https://doi.org/10.1063/1.4826154

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. УФ-Вид-спектры поглощения реакционной системы после ее термообработки в течение различного времени (а) и зависимость положения максимума полосы поглощения от длительности процесса (б)

Скачать (227KB)
3. Рис. 2. Рентгенограммы пленок на основе серебряных наноструктур, сформированных при различном времени полиольного синтеза (маркером * обозначен рефлекс, характерный для Ag2O) (а), и зависимость отношения интенсивностей рефлексов (111) и (200) от длительности процесса (б)

Скачать (194KB)
4. Рис. 3. Микроструктура серебряных наноструктур, сформированных при различной длительности полиольного синтеза: а – 15, б – 30, в – 45, г – 60, д – 75, е – 90 мин (по данным РЭМ, увеличение 10 000×)

Скачать (623KB)
5. Рис. 4. Микроструктура серебряных наноструктур, сформированных при различной длительности полиольного синтеза: а – 15, б – 30, в – 45, г – 60, д – 75, е – 90 мин (по данным АСМ)

6. Рис. 5. Микроструктура серебряных наноструктур, сформированных при различной длительности полиольного синтеза: а – 15, б – 30, в – 45, г – 60, д – 75, е – 90 мин (по данным РЭМ, увеличение 200 000×)

Скачать (559KB)
7. Рис. 6. Микроструктура серебряных нанопроволок, сформированных при длительности полиольного синтеза 30 мин (по данным ПЭМ)

Скачать (442KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».