Фазовые равновесия в квазитройной системе Li2O–Mn2O3–Eu2O3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами рентгенофазового и термического анализа (ТГ–ДСК) исследованы образы квазитройной системы Li2O–Mn2O3–Eu2O3, синтезированные из прекурсоров, подвергнутых предварительной механохимической активации и отожженных на воздухе при 700–1100°С. Дана оценка возможности замещения Mn на Eu для шпинели LiMn2–xEuxO4. Построена субсолидусная изобарическая диаграмма системы Li2O–Mn2O3–Eu2O3. При использовании моделей политермических разрезов LiEuO2–LiMnO2 и LiEuO2–LiMn2O4 получена проекция поверхности ликвидуса квазитройной системы Li2O–Mn2O3–Eu2O3. Определены температуры эвтектических и перитектических равновесий с участием трех кристаллических фаз и расплава.

Полный текст

Доступ закрыт

Об авторах

Г. А. Бузанов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: gbuzanov@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Г. Д. Нипан

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gbuzanov@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Thackeray M.M., Amine K. // Nature Energy. 2021. V. 6. P. 933. https://doi.org/10.1038/s41560-021-00860-3
  2. Goodenough J.B. // Nobel Lecture. 2019. V. 8. P. 165.
  3. Armstrong A.R., Bruce P.G. // Nature. 1996. V. 381. № 6582. P. 499. https://doi.org 10.1038/381499a0
  4. Thackeray M.M., Johnson C.S., Vaughey J.T. et al. // J. Mater. Chem. 2005. V. 15. № 23. P. 2257. http://doi.org/10.1039/b417616m
  5. Xie Y., Xu Y., Yan L. et al. // Solid State Ionics. 2005. V. 176. № 35–36. P. 2563. https://doi.org/10.1016/j.ssi.2005.06.022
  6. Xie Y., Yang R., Yan L. et al. // J. Power Sources. 2007. V. 168. P. 272. https://doi.org/10.1016/j.jpowsour.2007.01.019
  7. Feng C., Tang H., Zhang K., Sun J. // Mater. Chem. Phys. 2003. V. 80. № 3. P. 573. https://doi.org/10.1016/S0254-0584(03)00115-9
  8. Elsabawy K.M., Abou-Sekkina M.M., Elmetwaly E.C. // Solid State Sci. 2011. V. 13. № 3. P. 601. https://doi.org/10.1016/j.solidstatesciences.2010.12.033
  9. Tian Y., Kang X., Liu L. et al. // J. Rare Earths. 2008. V. 26. № 2. P. 279. https://doi.org/10.1016/S1002-0721(08)60081-2
  10. Arumugam D., Paruthimal Kalaignan G., Manisankar P. // Solid State Ionics. 2008. V. 179. № 15–16. P. 580. https://doi.org/10.1016/j.ssi.2008.04.010
  11. Zhang H.-L., Ren R., An J. // Mater. Sci. Forum. 2011. V. 686. P. 716. https://doi.org/10.4028/www.scientific.net/MSF.686.716
  12. Michalska M., Ziókowska D.A., Jasiński J.B. et al. // Electrochim. Acta. 2018. V. 276. P. 37. https://doi.org/10.1016/j.electacta.2018.04.165
  13. Michalska M., Hamankiewicz B., Ziółkowska D. et al. // Electrochim. Acta. 2014. V. 136. P. 286. https://doi.org/10.1016/j.electacta.2014.05.108
  14. Ha H.-W., Yun N.J., Kim K. // Electrochim. Acta. 2007. V. 52. № 9. P. 3236. https://doi.org/10.1016/j.electacta.2006.09.066
  15. Sun H., Chen Y., Xu C. et al. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247. https://doi.org/10.1007/s10008-011-1514-5
  16. Sighal R., Das S.R., Tomas M.S. et al. // J. Power Sources. 2007. V. 164. № 2. P. 857. https://doi.org/ 10.1016/j.jpowsour.2006.09.098
  17. Yang S.T., Jia J.H., Ding L., Zhang M.C. // Electrochim. Acta. 2003. V. 48. № 5. P. 569. https://doi.org/10.1016/S0013-4686(02)00726-0
  18. Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G. // J. Electronic. Mater. 2013. V. 42. № 6. P. 1275. https://doi.org/10.1007/s11664-013-2588-x
  19. Balaji S.R.K., Muharasu D., Shanmugan S. et al. // Ionics. 2010. V. 16. P. 351. https://doi.org/10.1007/s11581-009-0400-y
  20. Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G. // Chem. Mater. Res. 2013. V. 3. № 4. P. 15.
  21. Lee D.K., Han S.C., Ahn D. et al. // Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6842. https://doi.org/10.1021/am302003r
  22. Liu H.W., Zhang K.L. // Mater. Lett. 2004. V. 58. P. 3049. https://doi.org/10.1016/j.matlet.2004.05.040
  23. Liu H.W., Zhang K.L. // Inorg. Mater. 2005. V. 61. № 4. P. 646. https://doi.org/10.1007/s10789-005-0183-0
  24. Han S.C., Singh S.P., Hwang Y.-H., et al. // J. Electrochem. Soc. 2012. V. 159. № 11. P. A1867. https://doi.org/10.1149/2.009212jes
  25. Balaji S., Mani Chadran T., Muharasu D. // Ionics. 2012. V. 18. P. 549. https://doi.org/10.1007/s11581-011-0650-3
  26. Ram P., Gören A., Ferdov S. et al. // New J. Chem. 2016. V. 40. № 7. P. 6244. https://doi.org/10.1039/c6nj00198j
  27. Su Z., Xu M.-W., Ye S.-H., Wang Y.-L. // Acta Phys. Chim. Sin. 2009. V. 25. № 6. P. 1232. https://doi.org/10.3866/PKU.WHXB20090629
  28. Zhao G., He J., Zhang C. et al. // Rare Metal Mater. Eng. (China). 2008. V. 37. № 4. P. 709.
  29. Zhou Z.-H., Mei T.-Q. // Modern Chem. Ind. (China). 2009. V. 29. № 9. P. 246.
  30. Yuzer A., Ozkendir O.M. // J. Electronic Mater. 2016. V. 45. № 2. P. 989. https://doi.org/10.1007/s11664-015-4256-9
  31. Paulsen J.M., Dahn J.R. // Chem. Mater. 1999. V. 11. № 11. P. 3065. https://doi.org/10.1021/cm9900960
  32. Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/S0036023617050059
  33. Buzanov G.A., Nipan G.D. // Dokl. Phys. Chem. 2023. Accepted manuscript.
  34. Balakirev V.F., Golikov Yu.V. // Inorg. Mater. 2003. V. 39. Suppl. 1. P. S1. https://doi.org/10.1023/A:1024115817536
  35. Yankin A.M., Vedmid’ L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345. https://doi.org/10.1134/S003602441203034X
  36. Balakirev V.F., Vedmid’ L.B., Fedorova O.M. // Russ. J. Inorg. Chem. 2022. V. 67. P. 868. https://doi.org/10.1134/S0036023622060043
  37. Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1035. https://doi.org/10.1134/S0036023622070051
  38. Bärnighausen H. // Z. Anorg. Allg. Chem. 1970. V. 374. № 2. P. 201. https://doi.org/10.1002/zaac.19703740209
  39. Nyokong T., Greedan J.E. // Inorg. Chem. 1982. V. 21. № 1. P. 398. https://doi.org/10.1021/ic00131a071
  40. Barad C., Kimmel G., Hayun H. et al. // Materials. 2020. V. 13. № 9. Art. 2201. https://doi.org/10.3390/ma13092201
  41. Waintal A., Gondrand M. // Mater. Res. Bull. 1967. V. 2. № 9. P. 889. https://doi.org/10.1016/0025-5408(67) 90099-2
  42. Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
  43. Grundy A.N., Hallstedt B., Gauckler L.J. // J. Phase Equilib. 2003. V. 24. P. 21. https://doi.org/10.1007/s11669-003-0004-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дифрактограммы образцов серии Li1+xEu1–xMnxO3– (разрез LiEuO2—Li2MnO3): 1 — x = 0.1 (800 °C), 2 — x = 0.3 (900C), 3 — x = 0.1 (1100C), 4 — x = 0.8 (800C); a — твердый раствор на основе кубической модификации Eu2O3 (ssEu2O3), b — Li2MnO3, c — LiEuO2, m — твердый раствор на основе моноклинной модификации Eu2O3 (m-ssEu2O3).

3. Рис. 2. Дифрактограммы образцов серии LiEu1–xMnxO2– (разрез LiEuO2–LiMnO2): 1 — x = 0.3 (900C), 2 — x = 0.6 (1000C), 3 – x = 0.9 (1000C), 4 – x = 0.9 (1100C); a — твердый раствор на основе кубической модификации Eu2O3 (ssEu2O3), b – Li2MnO3, e – EuMnO3, f – LiMn2O4, h – EuMn2O5.

4. Рис. 3. Дифрактограммы образцов серии LiEu1–xMn2xO4– (разрез LiEuO2—LiMn2O4): 1 — x = 0.5 (900C), 2 — x = 0.7 (1000C), 3 — x = 0.7 (1100C). Замещение Mn на Eu в LiMn2O4: 4 — LiMn1.98Eu0.02O4 (800C), 5 — LiMn1.95Eu0.05O4 (900C); b — Li2MnO3, e — EuMnO3, f — LiMn2O4, h — EuMn2O5.

5. Рис. 4. Субсолидусная диаграмма (а) и проекция поверхности ликвидуса (б) квазитройной системы Li2O–Mn2O3–Eu2O3.

Скачать (832KB)
6. Рис. 5. Политермические диаграммы системы Li2O–Eu2O3–Mn2O3: а — сечение LiEuO2–LiMnO2, б — сечение LiEuO2–LiMn2O4.

7. Рис. 6. Термограмма образца брутто-состава Li1.1Eu0.9Mn0.1, разрез LiEuO2–Li2MnO3 на воздухе: 1 — кривая массы, 2 — дифференциальная кривая.

Скачать (567KB)
8. Рис. 7. Термограмма образца брутто-состава LiEu0.2Mn0.8, разрез LiEuO2–LiMnO2: 1 — кривая массы, 2 — дифференциальная кривая.

Скачать (459KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».