Complex Oxides in the Y2O3–Fe2O3–Ta2O5 System and Their Magnetic Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phase equilibria in the suboxides region of the Y2O3–Fe2O3–Ta2O5 system have been studied. The compound YFeTa2O8 was discovered for the first time, existing in a narrow temperature range of 1000–1400°C. Another previously unknown compound, Y2FeTa2O12, is realized in the temperature range up to 1000°C, at which it decomposes into YTaO4 and YFeTa2O8. It has been established that Y2FeTa2O12 belongs to the structural type of pyrochlore (sp. gr. Fd3m) and has lattice parameter a = 10.3158(6) Å. The existence of a solid solution of Y2-xFe1+xTaO4 in the range x = 0–0.2 has been confirmed. Isothermal sections of the system have been constructed for temperatures of 900 and 1200°C. The magnetic properties of the YFeTa2O8 and Y2FeTa2O12 phases in fields up to 5000 Oe in the temperature range 2–300 K have been studied and it has been shown that their behavior in almost the entire studied temperature range is characteristic of paramagnets. At extremely low temperatures, effects have been found indicating the presence of antiferromagnetic type interactions, but they are very weak against the background of a paramagnetic matrix.

Sobre autores

A. Egorysheva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
Russia

O. Ellert

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Russia

E. Popova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Russia

D. Kirdyankin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Russia

V. Omelyanyuk

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Russia

Bibliografia

  1. Егорышева А.В., Эллерт О.Г., Попова Е.Ф. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1515. https://doi.org/10.31857/S0044457X22100452
  2. Yang J., Hana Y., Shahid M. et al. // Scripta Mater. 2018. V. 149. P. 49. https://doi.org/10.1016/j.scriptamat.2018.02.005
  3. Егорышева А.В., Эллерт О.Г., Попова Е.Ф. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1367. https://doi.org/10.31857/S0044457X22100373
  4. Egorysheva A.V., Ellert O.G., Popova E.F. et al. // Mendeleev Commun. 2023. V. 33. P. 519. https://doi.org/10.1016/j.mencom.2023.06.025
  5. Егорышева А.В., Попова Е.Ф., Тюрин А.И. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1154. https://doi.org/10.1134/S0044457X19110059
  6. Cassedanne J. // Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences. 1961. V. 252. P. 3261.
  7. Kimizuka N., Katsura T. // J. Solid State Chem. 1975. V. 13. P. 176. https://doi.org/10.1016/0022-4596(75)90116-4
  8. Du Boulay D., Maslen E.N., Streltsov VA., Ishizawa N. // Acta Crystallogr., Sect. B: Struct. Sci. 1995. V. 51. P. 921. https://doi.org/10.1107/S0108768195004010
  9. Nakatsuka A., Yoshiasa A., Takeno S. // Acta Crystallogr., Sect. B: Struct. Sci. 1995. V. 51. P. 737. https://doi.org/10.1107/S0108768194014813
  10. Matsumoto T., Mori N., Iida J. et al. // Physica B. 1992. V. 180/181. P. 603. https://doi.org/10.1016/0921-4526(92)90408-K
  11. Bondar' I.A., Kalinin A.I., Koroleva L.N. // Inorg. Mater. 1972. V. 8. P. 1649.
  12. Yokogawa Y., Yoshimura M. // J. Am. Ceram. Soc. 1991. V. 74. P. 2077. https://doi.org/10.1111/j.1151-2916.1991.tb08262.x
  13. Васильев B.C., Пинаева М.М., Шкирман С.Ф. // Журн. неорган. химии. 1979. T. 24. C. 1046.
  14. Cavalli E., Volkova E., Calestani G., Leonyuk N. // J. Mater. Res. Bull. 2009. V. 44. P. 1127. https://doi.org/10.1016/j.materresbull.2008.10.008
  15. Studer F., Montfort Y., Raveau B. // J. Solid State Chem. 1973. V. 7. P. 269. https://doi.org/10.1016/0022-4596(73)90133-3
  16. Trunov V.K., Lykova L.N., Afonskii N.S. // Moscow University Chemistry Bulletin. 1968. V. 23. P. 35.
  17. Fernandez A.N., Macauley C.A., Park D., Levi C.G. // J. Eur. Ceram. Soc. 2018. V. 38. P. 4786. https://doi.org/10.1016/j.jeurceramsc.2018.06.024
  18. Лыкова Л.Н., Афонский Н.С. // Журн. неорган. химии. 1969. T. 14. C. 1419.
  19. Lepple M., Ushakov S.V., Lilova K. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 1629. https://doi.org/10.1016/j.jeurceramsc.2020.10.039
  20. Patilin S.N., Krylov E.A., Men'shenina N.F., Evdokimov A.A. // Russ. J. Inorg. Chem. 1985. V. 30. P. 367.
  21. Turnock A.C. // J. Am. Ceram. Soc. 1965. V. 48. P. 258. https://doi.org/10.1111/j.1151-2916.1965.tb14732.x
  22. Tamura S. // Solid State Commun. 1973. V. 12. P. 597. https://doi.org/10.1016/0038-1098(73)90293-7
  23. Ellert O.G., Egorysheva A.V. // Pyrochlore Ceramics: Properties, Processing, and Applications / Ed. Chowdhury A. Amsterdam: Elsevier, 2022. P. 315. https://doi.org/10.1016/B978-0-323-90483-4.00009-X
  24. Gardner J.S., Gingras M.J.P., Greedan J.E. // Rev. Mod. Phys. 2010. V. 82. P. 53. https://doi.org/10.1103/RevModPhys.82.53
  25. Lhotel E., Jaubert L.D.C., Holdsworth P.C.W. // J. Low Temp. Phys. 2020. V. 201. P. 710. https://doi.org/10.1007/s10909-020-02521-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).