Synthesis of nano-sized SnO2 by direct chemical precipitation using tin(II) chloride

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of synthesizing nano-sized SnO2 by direct chemical precipitation using tin(II) chloride and hydrogen peroxide has been investigated. The thermal behavior of the obtained powders was studied using simultaneous thermal analysis (TGA/DSC). The impact of H2O2 concentration in the reaction system on the set of functional groups in the materials was demonstrated using infrared spectroscopy, while X-ray diffraction analysis (XRD) was utilized to examine the crystalline structure of the powders, including the thermal transformation of tin(II) oxyhydroxide. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to show the effect of the reaction system composition on the size of primary particles and the agglomerates formed. In particular, it was established that with an increase of H2O2 concentration, both the size of the primary particles and the agglomerates decrease. The roughness of the films formed from the obtained nanopowders was studied using atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps for the obtained materials and to evaluate the electron work function from their surface.

Sobre autores

N. Fisenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia

I. Solomatov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”

Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia; st. Myasnitskaya, 21, Moscow, 101000 Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia

Ph. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia

T. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: fisenkonk@yandex.ru
Leninsky pr., 31, Moscow, 119991 Russia

Bibliografia

  1. White M.E., Bierwagen O., Tsai M.Y. et al. // J. Appl. Phys. 2009. V. 106. № 9. P. 93704. https://doi.org/10.1063/1.3254241
  2. Li Z., Graziosi P., Neophytou N. // Crystals (Basel). 2022. V. 12. № 11. P. 1591. https://doi.org/10.3390/cryst12111591
  3. Korotkov R.Y., Farran A.J.E., Culp T. et al. // J. Appl. Phys. 2004. V. 96. № 11. P. 6445. https://doi.org/10.1063/1.1805722
  4. Mun H., Yang H., Park J. et al. // APL Mater. 2015. V. 3. № 7. P. 76107. https://doi.org/10.1063/1.4927470
  5. Göpel W., Schierbaum K.D. // Sens. Actuators, B: Chem. 1995. V. 26. № 1–3. P. 1. https://doi.org/10.1016/0925-4005(94)01546-T
  6. Chopra K.L., Major S., Pandya D.K. // Thin Solid Films. 1983. V. 102. № 1. P. 1. https://doi.org/10.1016/0040-6090(83)90256-0
  7. Zhou D., Chekannikov A.A., Semenenko D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1488. https://doi.org/10.1134/S0036023622090029
  8. Bhattacharjee A., Ahmaruzzaman M., Sinha T. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015. V. 136. P. 751. https://doi.org/10.1016/j.saa.2014.09.092
  9. Liu A., Zhu M., Dai B. // Appl. Catal., A: Gen. 2019. V. 583. P. 117134. https://doi.org/10.1016/j.apcata.2019.117134
  10. Liu C., Xian H., Jiang Z. et al. // Appl. Catal., B. 2015. V. 176–177. P. 542. https://doi.org/10.1016/j.apcatb.2015.04.042
  11. Tonezzer M. // Chemosensors. 2020. V. 9. № 1. P. 2. https://doi.org/10.3390/chemosensors9010002
  12. Zito C.A., Perfecto T.M., Volanti D.P. // Adv. Mater Interfaces. 2017. V. 4. № 22. P. 1700847. https://doi.org/10.1002/admi.201700847
  13. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
  14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601703
  15. Krašovec U.O., Orel B., Hočevar S. et al. // J. Electrochem Soc. 1997. V. 144. № 10. P. 3398. https://doi.org/10.1149/1.1838025
  16. Olivi P., Pereira E.C., Longo E. et al. // J. Electrochem Soc. 1993. V. 140. № 5. P. L81. https://doi.org/10.1149/1.2221591
  17. Orel B., Lavrenčič-Štangar U., Kalcher K. // J. Electrochem Soc. 1994. V. 141. № 9. P. L127. https://doi.org/10.1149/1.2055177
  18. Köse H., Karaal Ş., Aydin A.O. et al. // Mater. Sci. Semicond. Process. 2015. V. 38. P. 404. https://doi.org/10.1016/j.mssp.2015.03.028
  19. Gu F., Wang S.F., Lü M.K. et al. // J. Phys. Chem. B. 2004. V. 108. № 24. P. 8119. https://doi.org/10.1021/jp036741e
  20. Aziz M., Saber Abbas S., Wan Baharom W.R. // Mater. Lett. 2013. V. 91. P. 31. https://doi.org/10.1016/j.matlet.2012.09.079
  21. Kang S.-Z., Yang Y., Mu J. // Colloids Surf., A: Physicochem. Eng. Asp. 2007. V. 298. № 3. P. 280. https://doi.org/10.1016/j.colsurfa.2006.11.008
  22. Lupan O., Chow L., Chai G. et al. // Mater. Sci. Eng., B. 2009. V. 157. № 1–3. P. 101. https://doi.org/10.1016/j.mseb.2008.12.035
  23. Chiu H.-C., Yeh C.-S. // J. Phys. Chem. C. 2007. V. 111. № 20. P. 7256. https://doi.org/10.1021/jp0688355
  24. Das S., Kar S., Chaudhuri S. // J. Appl. Phys. 2006. V. 99. № 11. P. 114303. https://doi.org/10.1063/1.2200449
  25. Liu Y., Koep E., Liu M. // Chem. Mater. 2005. V. 17. № 15. P. 3997. https://doi.org/10.1021/cm050451o
  26. Lu Y.M., Jiang J., Becker M. et al. // Vacuum. 2015. V. 122. P. 347. https://doi.org/10.1016/j.vacuum.2015.03.018
  27. Kim K.H., Park C.G. // J. Electrochem. Soc. 1991. V. 138. № 8. P. 2408. https://doi.org/10.1149/1.2085986
  28. Drevet R., Legros C., Bérardan D. et al. // Surf. Coat. Technol. 2015. V. 271. P. 234. https://doi.org/10.1016/j.surfcoat.2014.12.008
  29. Acarbaş Ö., Suvacı E., Doğan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
  30. Ibarguen C.A., Mosquera A., Parra R. et al. // Mater. Chem. Phys. 2007. V. 101. № 2-3. P. 433. https://doi.org/10.1016/j.matchemphys.2006.08.003
  31. Jońca J., Ryzhikov A., Kahn M.L. et al. // Chem. A Eur. J. 2016. V. 22. № 29. P. 10127. https://doi.org/10.1002/chem.201600650
  32. Nejati K. // Cryst. Res. Technol. 2012. V. 47. № 5. P. 567. https://doi.org/10.1002/crat.201100633
  33. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1744. https://doi.org/10.1134/S0036023623602374
  34. Kozlova L.O., Voroshilov I.L., Ioni Yu.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601077
  35. Liu S., Xie M., Li Y. et al. // Chem. Lett. 2009. V. 38. № 6. P. 614. https://doi.org/10.1246/cl.2009.614
  36. Rajan R., Vizhi R.E. // J. Supercond. Nov. Magn. 2017. V. 30. № 11. P. 3199. https://doi.org/10.1007/s10948-017-4118-1
  37. Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. E00112. https://doi.org/10.1016/j.heliyon.2016.e00112
  38. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A. 2019. V. 125. № 9. P. 652. https://doi.org/10.1007/s00339-019-2949-2
  39. Chandane W., Gajare S., Kagne R. et al. // Res. Chem. Intermed. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
  40. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. https://doi.org/10.1002/admi.201901866
  41. Gubbala S., Russell H.B., Shah H. et al. // Energy Environ Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
  42. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).