SYNTHESIS OF Nb2AlC MAX-PHASE IN KBr PROTECTIVE MELT
- Autores: Nagornov I.A1, Barsukovsky K.A1,2, Sapronova V.M1, Gorobtsov P.Y1, Mokrushin A.S1, Simonenko N.P1, Simonenko E.P1, Kuznetsov N.T1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Mendeleev Russian University of Chemical Technology
- Edição: Volume 69, Nº 12 (2024)
- Páginas: 1882-1891
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289020
- DOI: https://doi.org/10.31857/S0044457X24120201
- EDN: https://elibrary.ru/IUMFKW
- ID: 289020
Citar
Resumo
Sobre autores
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: il.nagornov.chem@gmail.com
Moscow, Russia
K. Barsukovsky
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical TechnologyMoscow, Russia
V. Sapronova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Bibliografia
- Xue Y., Wang C., Zeng Q. et al. // Tribology International. 2023. V. 178. P. 108009. https://doi.org/10.1016/j.triboint.2022.108009
- Magnus C. // Wear. 2023. V 516-517. P. 204588. https://doi.org/10.1016/j.wear.2022.204588
- Wang S., Ma J., Zhu S. et al. // Mater. Des. 2015. V. 67. P. 188. https://doi.org/10.1016/j.matdes.2014.11.043
- Gupta S., Filimonov D., Palanisamy T. et al. // Wear. 2008. V. 265. № 3-4. P. 560. https://doi.org/10.1016/j.wear.2007.11.018
- Gupta S., Barsoum M.W. // Wear. 2011. V. 271. № 9-10. P. 1878. https://doi.org/10.1016/j.wear.2011.01.043
- Podhurska V.Y., Kuprin O.S., Chepil R.V. et al. // Mater. Sci. 2023. V. 59. № 1. P. 10. https://doi.org/10.1007/s11003-023-00737-8
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. №5. P. 705. https://doi.org/10.1134/S0036023622050187
- Hettinger J.D., Lofland S.E., Finkel P. et al. // Phys. Rev. B. 2005. V. 72. № 11. P. 115120. https://doi.org/10.1103/PhysRevB.72.115120
- Lofland S.E., Hettinger J.D., Harrell K. et al. // Appl. Phys. Lett. 2004. V. 84. № 4. P. 508. https://doi.org/10.1063/1.1641177
- Salama I., El-Raghy T., Barsoum M. // J. Alloys Compd. 2002. V. 347. № 1-2. P. 271. https://doi.org/10.1016/S0925-8388(02)00756-9
- Zhang W., Travitzky N., Hu C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 10. P. 2396. https://doi.org/10.1111/j.1551-2916.2009.03187.x
- Yeh C.L., Kuo C.W. // J. Alloys Compd. 2010. V. 496. № 1-2. P. 566. https://doi.org/10.1016/j.jallcom.2010.02.113
- Bortolozo A.D., Sant’Anna O.H., da Luz M.S. et al. // Solid State Commun. 2006. V. 139. № 2. P. 57. https://doi.org/10.1016/j.ssc.2006.05.006
- Bortolozo A.D., Sant’Anna O.H., dos Santos C.A.M. et al. // Solid State Commun. 2007. V. 144. № 10-11. P. 419. https://doi.org/10.1016/j.ssc.2007.09.028
- Bortolozo A.D., Fisk Z., Sant’Anna O.H. et al. // Physica C: Superconductivity. 2009. V. 469. № 7-8. P. 256. https://doi.org/10.1016/j.physc.2009.02.005
- Medkour Y., Bouhemadou A., Roumili A. // Solid State Commun. 2008. V. 148. № 9-10. P. 459. https://doi.org/10.1016/j.ssc.2008.09.006
- Bouhemadou A., Khenata R. // J. Appl. Phys. 2007. V. 102. №4. https://doi.org/10.1063/1.2773634
- Chen J.X., Zhou Y.C. // Scripta Mater. 2004. V. 50. № 6. P. 897. https://doi.org/10.1016/j.scriptamat.2003.12.002
- Schuster J.C., Nowotny H. // Int. J. Mater. Res. 1980. V. 71. №6. P. 341. https://doi.org/10.1515/ijmr-1980-710601
- Miloserdov P.A., Gorshkov V.A., Kovalev I.D. et al. // Ceram. Int. 2019. V. 45. № 2. P. 2689. https://doi.org/10.1016/j.ceramint.2018.10.198
- Scabarozi T.H., Roche J., Rosenfeld A. et al. // Thin Solid Films. 2009. V. 517. № 9. P. 2920. https://doi.org/10.1016/j.tsf.2008.12.047
- Shang L., to Baben M., Pradeep K.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 1. P. 35. https://doi.org/10.1016/j.jeurceramsoc.2016.08.005
- Li Y., Qian Y., Zhao G. et al. // Ceram. Int. 2017. V. 43. № 8. P. 6622. https://doi.org/10.1016/j.ceramint.2017.02.033
- Wilhelmsson O., Rasander M., Carlsson M. et al. // Adv. Funct. Mater. 2007. V. 17. № 10. P. 1611. https://doi.org/10.1002/adfm.200600724
- Eklund P., Beckers M., Jansson U. et al. // Thin Solid Films. 2010. V. 518. № 8. P. 1851. https://doi.org/10.1016/j.tsf.2009.07.184
- Hopfeld M., Grieseler R., Vogel A. et al. // Surf. Coat. Technol. 2014. V. 257. P. 286. https://doi.org/10.1016/j.surfcoat.2014.08.034
- Zhou W., Li K., Zhu J. et al. // J. Phys. Chem. Solids. 2018. V. 120. P. 218. https://doi.org/10.1016/j.jpcs.2018.04.029
- Zhou W.B., Mei B.C., Zhu J.Q. // Mater. Lett. 2005. V. 59. № 12. P. 1547. https://doi.org/10.1016/j.matlet.2005.01.019
- Zhou W., Mei B., Zhu J. // Ceram. Int. 2007. V. 33. № 7. P. 1399. https://doi.org/10.1016/j.ceramint.2006.04.018
- Hu C., Sakka Y., Tanaka H. et al. // J. Alloys Compd. 2009. V. 487. № 1-2. P. 675. https://doi.org/10.1016/j.jallcom.2009.08.036
- Shein I.R., Ivanovskii A.L. // Phys. B: Condens. Matter. 2013. V. 410. P. 42. https://doi.org/10.1016/j.physb.2012.10.036
- Tan L., Yang S. // JOM. 2013. V. 65. № 2. P. 326. https://doi.org/10.1007/s11837-012-0548-1
- Hu Y., Yang X., Li L. et al. // Optik. 2022. V. 256. P. 168743. https://doi.org/10.1016/j.ijleo.2022.168743
- Hu Y., Yang W., Qi T. et al. // Optics Laser Technol. 2023. V. 161. P. 109116. https://doi.org/10.1016/j.optlastec.2023.109116
- Stumpf M., Fey T., Kakimoto K. et al. // Ceram. Int. 2018. V. 44. № 16. P. 19352. https://doi.org/10.1016/j.ceramint.2018.07.164
- Boatemaa L., Bosch M., Farle A. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 12. P. 5684. https://doi.org/10.1111/jace.15793
- Ma J., Li F., Cheng J. et al. // Tribology Lett. 2013. V. 50. № 3. P. 323. https://doi.org/10.1007/s11249-013-0126-x
- Shi X., Wang M., Xu Z. et al. // Mater. Des. 2013. V. 45. P. 365. https://doi.org/10.1016/j.matdes.2012.08.069
- Stumpf M., Kollner D., Biggemann J. et al. // Adv. Eng. Mater. 2019. V. 21. № 6. https://doi.org/10.1002/adem.201900048
- Hadi M.A., Christopoulos S.-R.G., Chroneos A. et al. // Mater. Today Commun. 2020. V. 25. P. 101499. https://doi.org/10.1016/j.mtcomm.2020.101499
- Saad Essaoud S., Jbara A.S. // Indian J. Phys. 2023. V. 97. № 1. P. 105. https://doi.org/10.1007/s12648-022-02386-0
- Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
- Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49. № 22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
- Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624600850
- Zhang H., Hu T., Wang X. et al. // Scientific Rep. 2015. V. 5. № 1. P. 14192. https://doi.org/10.1038/srep14192
- Fujii R., Gotoh Y., Liao M.Y. et al. // Vacuum. 2006. V. 80. № 7. P. 832. https://doi.org/10.1016/j.vacuum.2005.11.030
- Mansfeldova V., Zlamalova M., Tarabkova H. et al. // J. Phys. Chem. C. 2021. V. 125. № 3. P. 1902. https://doi.org/10.1021/acs.jpcc.0c10519
- Tippey K.E., Afanador R., Doleans M. et al. // J. Phys.: Conference Series 2018. V. 1067. P. 082010. https://doi.org/10.1088/1742-6596/1067/8/082010
Arquivos suplementares
