SYNTHESIS OF HIGH ELECTROCONDUCTIVE ZnO/CNT NANOCOMPOSITES WITH CHEMORESISTIVE RESPONSE AT ROOM TEMPERATURE
- Autores: Mokrushin A.S1, Dmitrieva S.A1,2, Nagornov I.A1, Simonenko N.P1, Vorobei A.M1, Averin A.A3, Simonenko E.P1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleev Russian University of Chemical Technology
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Edição: Volume 69, Nº 12 (2024)
- Páginas: 1872-1881
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289019
- DOI: https://doi.org/10.31857/S0044457X24120195
- EDN: https://elibrary.ru/IUOOXD
- ID: 289019
Citar
Resumo
Palavras-chave
Sobre autores
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
S. Dmitrieva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical TechnologyMoscow, Russia
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. Vorobei
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. Averin
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Bibliografia
- McAleer J.F., Moseley P.T., Norris J.O.W. et al. // J. Chem. Soc., Faraday Trans 1: Phys. Chem. Condens. Phases. 1987. V. 83. № 4. P. 1323. https://doi.org/10.1039/f19878301323
- Morrison S.R. // Sensors and Actuators. 1981. V. 2. P. 329. https://doi.org/10.1016/0250-6874(81)80054-6
- Heiland G. // Sens. Actuators. 1981. V. 2. P. 343. https://doi.org/10.1016/0250-6874(81)80055-8
- Rigoni F., Tognolini S., Borghetti P. et al. // Analyst. 2013. V. 138. № 24. P. 7392. https://doi.org/10.1039/c3an01209c
- Schedin F., Geim A.K., Morozov S.V. et al. // Nat. Mater. 2007. V. 6. № 9. P. 652. https://doi.org/10.1038/nmat1967
- Olorunkosebi A.A., Olumurewa K.O., Fasakin O. et al. // RSC Adv. 2023. V. 13. № 24. P. 16630. https://doi.org/10.1039/D3RA01684F
- Toda K., Furue R., Hayami S. // Anal. Chim. Acta. 2015. V. 878. P. 43. https://doi.org/10.1016/j.aca.2015.02.002
- Kim S.J., Koh H.-J., Ren C.E. et al. // ACS Nano. 2018. V. 12. № 2. P. 986. https://doi.org/10.1021/acsnano.7b07460
- Wang F., Yang C., Duan C. et al. // J. Electrochem. Soc. 2015. V. 162. № 1. P. B16. https://doi.org/10.1149/2.0371501jes
- Junkaew A., Arroyave R. // Phys. Chem. Chem. Phys. 2018. V. 20. № 9. P. 6073. https://doi.org/10.1039/C7CP08622A
- Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
- Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- Wang J., Zeng W., Zhou Q. // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.950974
- Li L., Yu M., Gao C. et al. // J. Alloys Compd. 2024. V. 1003. P. 175530. https://doi.org/10.1016/j.jallcom.2024.175530
- Samawi K.A., Abdulrazzaq S.J., Zorah M. et al. // J. Solid State Chem. 2024. V. 334. P. 124690. https://doi.org/10.1016/j.jssc.2024.124690
- Lama S., Choi H.-S., Ramesh S. et al. // Sci. Rep. 2024. V. 14. № 1. P. 11605. https://doi.org/10.1038/s41598-024-56354-1
- Luo K., Peng H., Zhang B. et al. // Coord. Chem. Rev. 2024. V. 518. P. 216049. https://doi.org/10.1016/j.ccr.2024.216049
- Zamansky K.K., Fedorov F.S., Shandakov S.D. et al. // Sens. Actuators, B. 2024. V. 417. P. 136116. https://doi.org/10.1016/j.snb.2024.136116
- Struchkov N.S., Romashkin A.V., Rabchinskii M.K. et al. // Sens. Actuators, B. 2024. V. 417. P. 136088. https://doi.org/10.1016/j.snb.2024.136088
- Xie T., Li F., Song P. et al. // J. Alloys Compd. 2024. V. 1002. P. 175271. https://doi.org/10.1016/j.jallcom.2024.175271
- Li Q., He R., Feng F. et al. // Sens. Actuators, B. 2024. V. 413. P. 135863. https://doi.org/10.1016/j.snb.2024.135863
- Dariyal P., Sharma S., Chauhan G.S. et al. // Nanoscale Adv. 2021. V. 3. № 23. P. 6514. https://doi.org/10.1039/D1NA00707F
- Xu K., Fu C., Gao Z. et al. // Instrum. Sci. Technol. 2018. V. 46. № 2. P. 115. https://doi.org/10.1080/10739149.2017.1340896
- Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- Kong J., Franklin N.R., Zhou C. et al. // Science (80-.). 2000. V. 287. № 5453. P. 622. https://doi.org/10.1126/science.287.5453.622
- Li J., Lu Y., Ye Q. et al. // Nano Lett. 2003. V. 3. № 7. P. 929. https://doi.org/10.1021/nl034220x
- Jeong S., Kim J., Lee J. // Adv. Mater. 2020. V. 32. № 51. https://doi.org/10.1002/adma.202002075
- Verssimo M.I.S. // TrAC Trends Anal. Chem. 2024. V. 178. P. 117813. https://doi.org/10.1016/j.trac.2024.117813
- Norizan M.N., Moklis M.H., Ngah Demon S.Z. et al. // RSC Adv. 2020. V. 10. № 71. P. 43704. https://doi.org/10.1039/D0RA09438B
- Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
- Lucci M., Regoliosi P., Reale A. et al. // Sens. Actuators B. 2005. V 111-112. P 181. https://doi.org/10.1016/j.snb.2005.06.033
- Mercuri F., Sgamellotti A., Valentini L. et al. // J. Phys. Chem. B. 2005. V. 109. № 27. P. 13175. https://doi.org/10.1021/jp0507290
- Марикуца А.В., Воробьева Н.А., Румянцева М.Н. // Изв. АН. Сер. химическая. 2017. Т. 10. С. 1728. https://doi.org/1026-3500
- Kauffman D.R., Star A. // Angew. Chem. Int. Ed. 2008. V. 47. № 35. P. 6550. https://doi.org/10.1002/anie.200704488
- Мокрушин А.С., Симоненко Н.П., Симоненко Т.Л. и др. // Журн. неорган. химии. 2021. V. 66. № 9. P. 1336. https://doi.org/10.31857/S0044457X21090063
- Li J., Zhang C., QuG. et al. // Talanta. 2024. V. 273. P. 125853. https://doi.org/10.1016/j.talanta.2024.125853
- Nami M., Taheri M., Deen I.A. et al. // TrAC Trends Anal. Chem. 2024. V. 174. P. 117664. https://doi.org/10.1016/j.trac.2024.117664
- Gamboa A., Fernandes E.C. // Sens. Actuators A. 2024. V. 366. P. 115013. https://doi.org/10.1016/j.sna.2024.115013
- Kumar D., Chaturvedi P., Saho P. et al. // Sens. Actuators B. 2017. V. 240. P. 1134. https://doi.org/10.1016/j.snb.2016.09.095
- Tian T., Yin H., Zhang L. et al. // Appl. Surf. Sci. 2023. V. 609. P. 155357. https://doi.org/10.1016/j.apsusc.2022.155357
- Lone M.Y., Kumar A., Husain S. et al. // Physica E: Low-dimensional Syst. Nanostructures. 2017. V. 87. P. 261. https://doi.org/10.1016/j.physe.2016.10.049
- Xiao Z., Kong L.B., Ruan S. et al. // Sens. Actuators B. 2018. V. 274. P. 235. https://doi.org/10.1016/j.snb.2018.07.040
- Zaporotskova I.V., Boroznina N.P., Parkhomenko Y.N. et al. // Mater. Electron. Eng. 2018. V. 20. № 1. P. 5. https://doi.org/10.17073/1609-3577-2017-1-5-21
- Young S.-J., Liu Y.-H., Lin Z.-D. et al. // J. Electrochem. Soc. 2020. V. 167. № 16. P. 167519. https://doi.org/10.1149/1945-7111/abd1be
- Belchi R., Pibaleau B., Pinault M. et al. // Mater. Adv. 2020. V. 1. № 5. P. 1232. https://doi.org/10.1039/D0MA00204F
- Yang M., Gong Y., Shen G. et al. // Mater. Lett. 2021. V. 283. P. 128733. https://doi.org/10.1016/j.matlet.2020.128733
- Schutt F., Postica V., Adelung R. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 27. P. 23107. https://doi.org/10.1021/acsami.7b03702
- Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators B. 2021. V. 336. P. 129729. https://doi.org/10.1016/j.snb.2021.129729
- Park S., Byoun Y., Kang H. et al. // ACS Omega. 2019. V. 4. № 6. P. 10677. https://doi.org/10.1021/acsomega.9b00773
- Zhang D., Sun Y., Zhang Y. // J. Mater. Sci. Mater. Electron. 2015. V. 26. № 10. P. 7445. https://doi.org/10.1007/s10854-015-3378-4
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
- Fedorov F.S., Simonenko N.P., Trouillet V. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 50. P. 56135. https://doi.org/10.1021/acsami.0c14055
- Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Appl. Surf. Sci. 2022. V. 589. P. 152974. https://doi.org/10.1016/j.apsusc.2022.152974
- Scepanovic M., Grujic-Brojcin M., Vojisavljevic K. et al. // J. Raman Spectrosc. 2010. V. 41. № 9. P. 914. https://doi.org/10.1002/jrs.2546
- Jiang C., Zhao J., Therese H.A. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8742. https://doi.org/10.1021/jp035371r
Arquivos suplementares
