Synthesis of Solid Solutions of Barium Fluoride with Rare Earth Element Fluorides and Study of Their Up-Conversion Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Solid solutions based on barium fluoride doped with rare earth element ions have been obtained by solid-phase synthesis. According to X-ray powder diffraction, the obtained samples have monophase fluorite structure. Increase in the concentration of rare earth element ions leads to decrease of crystal structure volume. Laser irradiation at 980 nm (radiation power of 1.2 W/cm2) produces luminescence in the visible spectral region. The presence of Yb3+ ion as sensitizer increases luminescence intensity for barium fluorides doped with Er3+ ions. Incorporation of Tm3+ ions into barium fluoride doped with Er3+ ions leads to decrease of total radiation intensity and the predominance of luminescence in the red spectral region. Color coordinates calculated from photoluminescence data by CIE 31 standard have been determined for the samples. The obtained materials of prescribed composition can transform infrared radiation into visible light.

Sobre autores

A. Volchek

Bryansk State University

Email: angelina.vol4ek@yandex.ru
241023, Bryansk, Russia

S. Kuznetsov

Bryansk State University

Autor responsável pela correspondência
Email: angelina.vol4ek@yandex.ru
241023, Bryansk, Russia

Bibliografia

  1. Auzel F. // Chem. Rev. 2004. V. 104. № 1. P. 139. https://doi.org/10.1021/cr020357g
  2. Martı’n-Rodrı’guez R., Valiente R., Polizzi S. et al. // J. Phys. Chem. C. 2009. V. 113. № 28. P. 12195. https://doi.org/10.1021/jp901711g
  3. Овсянкин В.В., Феофилов П.П. // Письма в ЖЭТФ. 1966. Т. 3. С. 494.
  4. Emory M. Chan. // Chem. Soc. Rev. 2015. V. 44. P. 1653. https://doi.org/10.1039/C4CS00205A
  5. Madirov E.I., Konyushkin V.A., Nakladov A.N. et al. // J. Mater. Chem. C. 2021. V. 9. P. 3493. https://doi.org/10.1039/d1tc00104c
  6. Saleta Reig D., Grauel B., Konyushkin V.A. et al. // J. Mater. Chem. C. 2020.V. 8. P. 4093. https://doi.org/10.1039/C9TC06591A
  7. Раджабов Е.А., Шендрик Р.Ю. // Оптика и спектроскопия. 2020. Т. 128. № 11. С. 1621. https://doi.org/10.21883/OS.2020.11.50164.10-20
  8. Li T., Guo C.-F., Yang Y.-M. et al. // Acta Mater. 2013. V. 61. P. 7481. https://doi.org/10.1016/j.actamat.2013.08.060
  9. Silva J.R., Gouveia-Neto A.S., Bueno L.A. // Nonlinear Freq. Gener. Convers. Mater. Devices. Appl. 2014. V. 8964. https://doi.org/10.1117/12.2036374
  10. Liao J., Yang Z., Wu H. et al. // J. Mater. Chem. C. 2013. V. 1. P. 6541. https://doi.org/10.1039/c3tc30895b
  11. Betina A.A., Bulatova T.S., Kolesnikov I.E. et al. // Russ. J. Gen. Chem. 2022. V. 92. P. 2832. https://doi.org/10.1134/S1070363222120349
  12. Rafique R., Baek S.H., Phan L.M.T. et al. // Mater. Sci. Eng. C. 2019. V. 99. P. 1067. https://doi.org/10.1016/j.msec.2019.02.046
  13. Gromak N.A., Kolokolov F.A., Dotsenko V.V. et al. // Russ. J. Gen. Chem. 2021. V. 91. P. 685. https://doi.org/10.1134/S1070363221040174
  14. Zhao Y., Wang X., Zhang Y. et al. // J. Alloys Compd. 2020. V. 84. 154998. https://doi.org/10.1016/j.jallcom.2020.154998
  15. Han X., Song E., Chen W. et al. // J. Mater. Chem. C. 2020. V. 8. P. 9836. https://doi.org/10.1039/D0TC01502D
  16. Ушаков С.Н., Усламина М.А., Нищев К.Н. и др. // Оптика и спектроскопия. 2020. Т. 128. № 5. С. 607. https://doi.org/10.21883/OS.2020.05.49317.278-19
  17. Cheng L., Cheng G., Dong R., Zhang X. // Adv. Mater. Res. 2011. V. 287. P. 490. https://doi.org/10.4028/www.scientific.net/AMR.287-290.490
  18. Liu X., Aidilibike T., Guo J. // RSC Advances. 2017. V. 7. P. 14010. https://doi.org/10.1039/C7RA00071E
  19. Karbowiak M., Cichos J. // J. Alloys Compd. 2016. P. 258. https://doi.org/10.1016/j.jallcom.2016.02.255
  20. Yun X., Zhou J., Zhu Y. et al. // J Phys. Chem. Solids. 2022. V. 163. P. 110545. https://doi.org/10.1016/j.jpcs.2021.110545
  21. Wang Z., Jiao H., Fu Z. // J. Lumin. 2019. V. 206. P. 273. https://doi.org/10.1016/j.jlumin.2018.10.034
  22. Rivera V.A.G., Silva O.B., El-Amraoui M. et al. // Optical Components and Materials XII. 2015. V. 9359. P. 935913. https://doi.org/10.1117/12.2079344

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (68KB)
3.

Baixar (72KB)
4.

Baixar (97KB)
5.

Baixar (108KB)

Declaração de direitos autorais © А.А. Волчек, С.В. Кузнецов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies