Thermodynamic Modeling and Experimental Implementation of the Synthesis of Vanadium Oxide Films

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper describes the thermodynamic modeling and experimental study of the synthesis of vanadium oxide films at various temperatures from the tetrakis(ethylmethylaminovanadium) V[NC3H8]4 precursor in the presence of oxygen in an argon atmosphere. The thermodynamic modeling was carried out using the calculation of chemical equilibria based on the minimization of the Gibbs energy of the system. In the experimental part of the paper, the films were synthesized by the atomic layer deposition procedure. The thermodynamic modeling and experimental results agree with each other and can be used to develop procedures for the synthesis of film coatings based on vanadium oxides.

Sobre autores

V. Shestakov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University of Architecture and Civil Engineering

Email: vsh@niic.nsc.ru
630090, Novosibirsk, Russia; 630008, Novosibirsk, Russia

V. Seleznev

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: vsh@niic.nsc.ru
630090, Novosibirsk, Russia

S. Mutilin

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: vsh@niic.nsc.ru
630090, Novosibirsk, Russia

V. Kichay

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: vsh@niic.nsc.ru
630090, Novosibirsk, Russia

L. Yakovkina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vsh@niic.nsc.ru
630008, Novosibirsk, Russia

Bibliografia

  1. Jager M.F., Ott C., Kraus P.M. et al. // Proc. Natl. Acad. Sci. 2017. V. 114. № 36. P. 9558. https://doi.org/10.1073/pnas.1707602114
  2. Morin F.J. // Phys. Rev. Lett. 1959. V. 3. № 1. P. 34. https://doi.org/10.1103/PhysRevLett.3.34
  3. Shao Z., Cao X., Luo H. et al. // NPG Asia Mater. 2018. V. 10. № 7. P. 581. https://doi.org/10.1038/s41427-018-0061-2
  4. Liu K., Lee S., Yang S. et al. // Mater. Today. 2018. V. 21. № 8. P. 875. https://doi.org/10.1016/j.mattod.2018.03.029
  5. Lu C., Lu Q., Gao M. et al. // Nanomaterials. 2021. V. 11. № 1. P. 114. https://doi.org/10.3390/nano11010114
  6. Schlag H.J., Scherber W. // Thin Solid Films. 2000. V. 366. № 1–2. P. 28. https://doi.org/10.1016/S0040-6090(00)00711-2
  7. Kana Kana J.B., Ndjaka J.M., Vignaud G. et al. // Opt. Commun. 2011. V. 284. № 3. P. 807. https://doi.org/10.1016/j.optcom.2010.10.009
  8. Sun J., Pribil G.K. // Appl. Surf. Sci. 2017. V. 421. P. 819. https://doi.org/10.1016/j.apsusc.2016.09.125
  9. Briggs R.M., Pryce I.M., Atwater H.A. // Opt. Express. 2010. V. 18. № 11. P. 11192. https://doi.org/10.1364/oe.18.011192
  10. Prinz V.Y., Mutilin S.V., Yakovkina L.V. et al. // Nanoscale. 2020. V. 12. № 5. P. 3443. https://doi.org/10.1039/C9NR08712E
  11. Mutilin S.V., Prinz V.Y., Seleznev V.A. et al. // Appl. Phys. Lett. 2018. V. 113. № 4. P. 043101. https://doi.org/10.1063/1.5031075
  12. Mutilin S.V., Prinz V.Y., Yakovkina L.V. et al. // CrystEngComm. 2021. V. 23. № 2. P. 443. https://doi.org/10.1039/D0CE01072C
  13. You Zhou, Ramanathan S. // Proc. IEEE. 2015. V. 103. № 8. P. 1289. https://doi.org/10.1109/JPROC.2015.2431914
  14. Yang Z., Ko C., Ramanathan S. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 337. https://doi.org/10.1146/annurev-matsci-062910-100347
  15. Nakano M., Shibuya K., Ogawa N. et al. // Appl. Phys. Lett. 2013. V. 103. № 15. P. 153503. https://doi.org/10.1063/1.4824621
  16. Kats M.A., Blanchard R., Zhang S. et al. // Phys. Rev. X. 2013. V. 3. № 4. P. 041004. https://doi.org/10.1103/PhysRevX.3.041004
  17. Rios C., Hosseini P., Wright C.D. et al. // Adv. Mater. 2014. V. 26. № 9. P. 1372. https://doi.org/10.1002/adma.201304476
  18. Faucheu J., Bourgeat-Lami E., Prevot V. // Adv. Eng. Mater. 2018. P. 1800438. https://doi.org/10.1002/adem.201800438
  19. Ke Y., Wang S., Liu G. et al. // Small. 2018. V. 14. № 39. P. 1802025. https://doi.org/10.1002/smll.201802025
  20. Liu T.-J.K., Kuhn K. CMOS and Beyond. Cambridge: Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107337886
  21. Zhu H.-F., Du L.-H., Li J. et al. // Appl. Phys. Lett. 2018. V. 112. № 8. P. 081103. https://doi.org/10.1063/1.5020930
  22. Ko C., Yang Z., Ramanathan S. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 9. P. 3396. https://doi.org/10.1021/am2006299
  23. Qazilbash M.M., Brehm M., Chae B.-G. et al. // Science. 2007. V. 318. № 5857. P. 1750. https://doi.org/10.1126/science.1150124
  24. Zimmers A., Aigouy L., Mortier M. et al. // Phys. Rev. Lett. 2013. V. 110. № 5. P. 056601. https://doi.org/10.1103/PhysRevLett.110.056601
  25. Chang Y.J., Yang J.S., Kim Y.S. et al. // Phys. Rev. B. 2007. V. 76. № 7. P. 075118. https://doi.org/10.1103/PhysRevB.76.075118
  26. Qazilbash M.M., Tripathi A., Schafgans A.A. et al. // Phys. Rev. B. 2011. V. 83. № 16. P. 165108. https://doi.org/10.1103/PhysRevB.83.165108
  27. Stroud D. // Phys. Rev. B. 1975. V. 12. № 8. P. 3368. https://doi.org/10.1103/PhysRevB.12.3368
  28. Inomata N., Usuda T., Yamamoto Y. et al. // Sensors Actuators A Phys. 2022. V. 346. P. 113823. https://doi.org/10.1016/j.sna.2022.113823
  29. Li G., Xie D., Zhong H. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1729. https://doi.org/10.1038/s41467-022-29456-5
  30. Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
  31. Zhang Y., Xiong W., Chen W. et al. // Nanomaterials. 2021. V. 11. № 2. P. 1. https://doi.org/10.3390/nano11020338
  32. Xue X., Zhou Z., Peng B. et al. // RSC Adv. 2015. V. 5. № 97. P. 79249. https://doi.org/10.1039/C5RA13349A
  33. Shi R., Shen N., Wang J. et al. // Appl. Phys. Rev. 2019. V. 6. № 1. https://doi.org/10.1063/1.5087864
  34. Li J., An Z., Zhang W. et al. // Appl. Surf. Sci. 2020. V. 529. P. 147108. https://doi.org/10.1016/j.apsusc.2020.147108
  35. Brahlek M., Zhang L., Lapano J. et al. // MRS Commun. 2017. V. 7. № 1. P. 27. https://doi.org/10.1557/mrc.2017.2
  36. Prasadam V.P., Bahlawane N., Mattelaer F. et al. // Mater. Today Chem. 2019. V. 12. P. 396. https://doi.org/10.1016/j.mtchem.2019.03.004
  37. Bai G., Niang K.M., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 052402. https://doi.org/10.1116/6.0000353
  38. Niang K.M., Bai G., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 4. P. 042401. https://doi.org/10.1116/6.0000152
  39. Kozen A.C., Joress H., Currie M. et al. // J. Phys. Chem. C. 2017. V. 121. № 35. P. 19341. https://doi.org/10.1021/acs.jpcc.7b04682
  40. Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. Т. 70. № 2. С. 283. https://doi.org/10.1007/s11172-021-3083-9
  41. Шестаков В.А., Косинова М.Л. // Журн. неорг. химии. 2021. Т. 66. № 11. С. 1585. https://doi.org/10.31857/S0044457X21110155
  42. Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 829.https://doi.org/10.31857/S0044457X20060215
  43. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
  44. Merenkov I.S., Katsui H., Khomyakov M.N. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5123. https://doi.org/10.1016/j.jeurceramsoc.2019.08.006
  45. Титов В.А., Косяков В.И., Кузнецов Ф.А. Проблемы электронного материаловедения. Новосибирск: Наука, 1986.
  46. Kang Y.-B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.1016/j.jeurceramsoc.2012.04.045
  47. Barin I. Termodynamical Data of Pure Substances. N.Y., 1989.
  48. Mahmoodinezhad A., Janowitz C., Naumann F. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 2. P. 022404. https://doi.org/10.1116/1.5134800
  49. Henkel K., Gargouri H., Gruska B. et al. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2013. V. 32. № 1. P. 01A107. https://doi.org/10.1116/1.4831897
  50. Haeberle J., Henkel K., Gargouri H. et al. // Beilstein J. Nanotechnol. 2013. V. 4. № 1. P. 732. https://doi.org/10.3762/bjnano.4.83
  51. Powder diffraction Files Inorganic Phases. International Centre for Diffraction Data, Pennsylvania, USA, 2010
  52. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (75KB)
3.

Baixar (61KB)
4.

Baixar (58KB)
5.

Baixar (149KB)
6.

Baixar (76KB)
7.

Baixar (56KB)

Declaração de direitos autorais © В.А. Шестаков, В.А. Селезнев, С.В. Мутилин, В.Н. Кичай, Л.В. Яковкина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies