Study of spin crossover phenomenon in dimethylsulfoxide solutions of an iron(ii) perrhenate complex with 2,6-bis(benzimidazol-2-yl)piridine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By methods of static magnetic susceptibility, conductometry and spectrophotometry measurements in UV and visible spectra ranges, there were studied physicochemical properties of solutions of perrhenate iron(II) complexes with 2,6-bis(benzimidazol-2-yl)pyridine (L) of composition [FeL2](ReO4)2 ⋅ 1.5H2O (1) in dimethylsulfoxide (DMSO). As it was established previously, 1 provides a sharp high-temperature spincrossover (SCO) 1А15Т2. The study of the temperature dependence of meff(Т) of complex 1 in DMSO showed that the SCO also reveals itself in solution. According to the electrical conductivity of solutions in DMSO at 298 K, the complex 1 in the studied concentration range 3.6 × 10–6 — 9.12 × 10–4 M is almost completely dissociated. An absorption peak was found in the UV region of the spectrum, which is practically independent on temperature. In the visible region, two combined absorption peaks are observed at 520–560 nm, which are responsible for the complex formation of FeL2+ and FeL22+ and vary with temperature and L concentration.

About the authors

V. V. Kokoivkin

Nikolaev Institute of Inorganic Chemistry, SB RAS

Author for correspondence.
Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk

I. V. Mironov

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk

Е. V. Korotaev

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk

L. G. Lavrenova

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Spin Crossover in Transition Metal Compounds I–III / Eds. Gütlich P., Goodwin H.A.Berlin, Heidelberg: Springer, 2004.
  2. Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Wiley, 2013. 562 p.
  3. Kumar K.S., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176. https://doi.org/10.1016/j.ccr.2017.03.024
  4. Scott H.S., Staniland R.W., Kruger P.E. // Coord. Chem. Rev. 2018. V. 362. P. 24. https://doi.org/10.1016/j.ccr.2018.02.001
  5. Yang X., Enriquez-Cabrera A., Dorian Toha D. et al. // Dalton Trans. 2023. V. 52. P. 10828. https://doi.org/10.1039/d3dt02003g
  6. Kahn O., Krober J., Jay C. // Adv. Mater. 1992. V. 4. P. 718. https://doi.org/10.1002/adma.19920041103
  7. Enriquez-Cabrera A., Rapakousiou A., Bello M.P. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213396. https://doi.org/10.1016/j.ccr.2020.213396
  8. Kumar K.S., Vela S., Heinrich B. et al. // Dalton Trans. 2020. V. 49. P. 1022. https://doi.org/10.1039/C9DT04411F
  9. Kuppusamy S.K., Mizuno A., Garcia-Fuente A. et al. // ACS Omega. 2022. V. 7. № 16. P. 13654. https://doi.org/10.1021/acsomega.1c07217
  10. Molnar G., Rat S., Salmon L. et al. // Adv. Mater. 2018. V. 30. P. 1703862. https://doi.org/10.1002/adma.201703862
  11. Shakirova O.G., Lavrenova L.G. // Crystals. 2020. V. 10. P. 843. https://doi.org/10.3390/cryst10090843
  12. Лавренова Л.Г., Шакирова О.Г. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 774. https://doi.org/10.31857/S0044457X2360010X
  13. Guo W., Daro N., Pillet S. et al. // Chem. Eur. J. 2020. V. 26. № 57. P. 12927. https://doi.org/10.1002/chem.202001821
  14. Ribeiro P.O., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
  15. Cuza E., Mekuimemba C.D., Cosquer N. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6536. https://doi.org/10.1021/acs.inorgchem.1c00335
  16. Craze A.R., Zenno H., Pfrunder M.C. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6731. https://doi.org/10.1021/acs.inorgchem.1c00553
  17. Piedrahita-Bello M., Angulo-Cervera J.E., Courson R. et al. // J. Mater. Chem. C. 2020. V. 8. № 18. P. 6001. https://doi.org/10.1039/D0TC01532F
  18. Nguyen T.D., Veauthier J.M., Angles-Tamayo G.F. et al. // J. Am. Chem. Soc. 2020. V. 142. № 10. P. 4842. https://doi.org/10.1021/jacs.9b13835
  19. Luo B.-X., Pan Y., Meng Y.-Sh. et al. // Eur. J. Inorg. Chem. 2021. V. 38. P. 3992. https://doi.org/10.1002/ejic.202100622
  20. Turo-Cortes R., Meneses–Sanchez M., Delgado T. et al. // J. Mater. Chem. C. 2022. V. 10. P. 10686. https://doi.org/10.1039/D2TC02039D
  21. Ibrahim N.M.J.N., Said S.M., Mainal A. et al. // Mater. Res. Bull. 2020. V. 126. P. 110828. https://doi.org/10.1016/j.materresbull.2020.110828
  22. Ribeiro P.J., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
  23. Strauss B., Linert W., Gutmann V. et al. // Monatsh. Chem. 1992. V. 123. P. 537.
  24. Boca M., Jameson R.F., Linert W. // Coord. Chem. Rev. 2011. V. 255. P. 290. https://doi.org/10.1016/j.ccr.2010.09.010
  25. Bräunlich I., Sánchez-Ferrer A., Bauer M. et al. // Inorg. Chem. 2014. V. 53. P. 3546. https://doi.org/10.1021/ic403035u
  26. Sundaresan S., Kitchen J.A., Brooker S. // Inorg. Chem. Front. 2020. V. 7. P. 2050. https://doi.org/10.1039/c9qi01478k
  27. Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
  28. Toftlund H. // Coord. Chem. Rev. 1989. V. 94. P. 67.
  29. Lavrenova L.G., Shakirova O.G. // Eur. J. Inorg. Chem. 2013. № 5–6. P. 670. https://doi.org/10.1002/ejic.201200980
  30. Kokovkin V.V., Mironov I.V., Korotaev E.V. et al. // Chem. Select. 2019. V. 4. P. 9360. https://doi.org/10.1002/slct.201901424
  31. Коковкин В.В., Коротаев Е.В., И.В. Миронов И.В. и др. // Журн. структур. химии. 2021. Т. 62. № 8. С. 1277. https://doi.org/10.26902/JSC_id78495
  32. Лавренова Л.Г., Дюкова И.И., Коротаев Е.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 34. https://doi.org/10.31857/S0044457X20010109
  33. Селвуд П. Магнетохимия. М.: Изд-во иностр. литер., 1958. 458 с.
  34. Ракитин Ю.В., Калиников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 с.
  35. Дей К., Селбин Д. Теоретическая неорганическая химия / Пер. с англ. М.: Химия, 1976. 568 с.
  36. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Лань, 2015. 672 с.
  37. Добош Д. Электрохимические константы. Справочник для электрохимиков / Пер. с англ. М.: Мир, 1980. 365 с.
  38. Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.31857/S0044457X21100123

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».