Anion-Exchange Resin Precipitation of Nickel Ferrite Nanopowders Modified by Plasmonic Particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic nickel ferrite/gold hybrid nanoparticles are promising materials for use in medicine, microelectronics, and plasmon-enhanced photocatalysis. The catalytic activity of a hybrid material depends on the composition, morphology, surface charge, and size of the magnetic core. In this work, anion-exchange resin coprecipitation of iron and nickel followed by heat treatment of the prepared hydroxides was used to manufacture nickel ferrite NiFe2O4 nanopowders. Fractional factorial design (FFD 27-4) was used to study the effects of reaction parameters on NiFe2O4 formation. The synthesis under the found optimal conditions yielded powders with an average grain size of 22.7 ± 1.0 nm. NiFe2O4/Au hybrid particles were manufactured by the direct reduction of gold with methionine (α-amino-γ-methylthiobutyric acid). Their formation was proved by optical spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

About the authors

S. V. Saikova

Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: ssai@mail.ru
660036, Akademgorodok, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

D. I. Nemkova

Siberian Federal University

Email: ssai@mail.ru
660041, Krasnoyarsk, Russia

E. V. Pikurova

Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: ssai@mail.ru
660036, Akademgorodok, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

A. S. Samoilo

Siberian Federal University

Author for correspondence.
Email: ssai@mail.ru
660041, Krasnoyarsk, Russia

References

  1. Alyabyev S.B., Beletskaya I.P. // Russ. Chem. Rev. 2017. V. 86. P. 689. https://doi.org/10.1070/RCR4727
  2. Redina E.A., Greish A.A., Mishin I.V. et al. // Catal. Today. 2015. V. 241. P. 246. https://doi.org/10.1016/j.cattod.2013.11.065
  3. Кривенцов В.В., Володин А.М., Новгородов Б.Н. и др. // Химическая физика и мезоскопия. 2019. Т. 21. № 1. С. 29. https://doi.org/10.15350/17270529.2019.1.5
  4. Ямен А., Попков В.И. // Медицина: теория и практика. 2019. Т. 4. С. 35.
  5. Мелешко А.А., Афиногенова А.Г., Афиногенов Г.Е. и др. // Инфекция и иммунитет. 2020. Т. 10. № 4. С. 639. https://doi.org/10.15789/2220-7619-AIA-1512
  6. Silvestri A., Mondini S., Marelli M. et al. // Langmuir. 2016. V. 32. № 28. P. 7117. https://doi.org/10.1021/acs.langmuir.6b01266
  7. Saire-Saire S., Barbosa E.C.M., Garcia D. et al. // RSC Adv. 2019. V. 9. № 38. P. 22116. https://doi.org/10.1039/C9RA04222A
  8. Wang X., Wang L., Lim I.-I.S. et al. // J. Nanosci. Nanotechnol. 2009. V. 9. № 5. P. 3005. https://doi.org/10.1166/jnn.2009.206
  9. Lin F., Doong R. // Appl. Catal., A: General. 2014. V. 486. P. 32. https://doi.org/10.1016/j.apcata.2014.08.013
  10. Dom R., Subasri R., Radha K., Borse P.H. // Solid State Commun. 2011. V. 151. P. 470. https://doi.org/10.1080/17458080.2012.690893
  11. Peymanfar R., Ramezanalizadeh H. // Optik. 2018. V. 169. P. 424. https://doi.org/10.1016/j.ijleo.2018.05.072
  12. Yang H., Zhang X., Weiqin A., Guanzhou Q. // Mater. Res. Bull. 2004. V. 39. № 6. P. 833.
  13. Azizi A., Sadrnezhaad S.K. // Ceram. Int. 2010. V. 36. P. 2241. https://doi.org/10.1016/j.ceramint.2010.06.004
  14. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 37. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  15. Лисневская И.В., Боброва И.А., Петрова А.В., Лупейко Т.Г. // Журн. неорган. химии. 2012. Т. 57. С. 535.
  16. Sivakumar P., Ramesh R., Ramanand A. et al. // Mater. Res. Bull. 2011. V. 46. P. 2208.
  17. Mana R., Raguram T., Rajni K.S. // Mater. Today: Proc. 2019. V. 18. P. 1753.
  18. Chen D.H., He X.R. // Mater. Res. Bull. 2001. V. 36. P. 1369. https://doi.org/10.1016/S0025-5408(01)00620-1
  19. Hassan A., Khan M.A., Shahid M. et al. // J. Magn. Magn. Mater. 2015. V. 393. P. 56. https://doi.org/10.1016/j.jmmm.2015.05.033
  20. Velmurugan K., Venkatachalapathy V.S.K., Sendhilnathan S. // Mater. Res. 2010. V. 13 P. 299. https://doi.org/10.1590/S1516-14392010000300005
  21. Gadkari A.B., Shinde T.J., Vasambekar P.N. // J. Mater. Sci.: Mater. Electron. 2010. V. 21. P. 96. https://doi.org/10.1007/s10854-009-9875-6
  22. Maaz K., Karim S., Mumtaz A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1838. https://doi.org/10.1016/j.jmmm.2008.11.098
  23. Пат. РФ RU 2771498. Опубл. 05.05.2022.
  24. Pashkov G.L., Saikova S.V., Panteleeva M.V. // Theor. Found. Chem. Eng. 2016. V. 50. № 4. P. 575. https://doi.org/10.1134/S0040579516040254
  25. Сайкова С.В., Киршнева Е.А., Пантелеева М.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1013.
  26. Сайкова С.В., Киршнева Е.А., Фадеева Н.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 158.
  27. Mikalauskaite A., Kondrotas R., Niaura G., Jagminas A. // J. Phys. Chem. 2015. V. 119. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
  28. Saykova D., Saikova S., Mikhlin Yu. et al. // Metals. 2020. V. 10. P. 1075. https://doi.org/10.3390/met10081075
  29. Saikova S., Pavlikov A., Trofimova T. et al. // Metals. 2020. V. 11. № 5. https://doi.org/10.3390/met11050705
  30. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. Федер. ун-т, 2018. 198 с.
  31. Вулих А.И. Ионообменный синтез. М.: Химия, 1973. 232 с.
  32. Сайкова С.В., Пантелеева М.В., Николаева Р.Б. // Журн. прикл. химии. 2002. Т. 75. № 11. С. 1823.
  33. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976 г. 280 с.
  34. Сайкова С.В., Трофимова Т.В., Павликов А.Ю., Самойло А.С. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 287.
  35. Rio I.S.R., Rodrigues A.R.O., Rodrigues C.P. et al. // Materials. 2020. V. 13. № 4. P. 815. https://doi.org/10.3390/ma13040815
  36. Meledandri C. J., Stolarczyk J. K., Brougham D.F. // ACS Nano. 2011. V. 5. № 3. P. 1747. https://doi.org/10.1021/nn102331c
  37. An P., Zuo F., Li X. et al. // Nano. 2013. V. 8. № 6. P. 1350061. https://doi.org/10.1142/S1793292013500616
  38. Stoeva S.I., Huo F., Lee J.-S., Mirkin C.A. // J. Am. Chem. Soc. 2005. V. 127. № 44. P.15362. https://doi.org/10.1021/ja055056d
  39. Kim G., Weiss S.J., Levine R.L. // Biochim. Biophys. Acta. 2014. V. 1840. № 2. P. 901. https://doi.org/10.1016/j.bbagen.2013.04.038
  40. Glisic B.D., Djuran M.I., Stanic Z.D., Rajkovic S. // Gold Bull. 2014. V. 47. № 2. P. 33. https://doi.org/10.1007/s13404-013-0108-7
  41. Mie G. // Ann. Phys. 1908. V. 25. № 2. P. 377. https://doi.org/10.1002/andp.19083300302
  42. Henglein A. // J. Phys. Chem. 1993. V. 97. № 21. P. 5451.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (392KB)
3.

Download (94KB)
4.

Download (614KB)
5.

Download (662KB)
6.

Download (110KB)
7.

Download (950KB)
8.

Download (185KB)
9.

Download (53KB)

Copyright (c) 2023 С.В. Сайкова, Д.И. Немкова, Е.В. Пикурова, А.С. Самойло

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies