Synthesis, Ionic, and Phase Compositions of Ferrogarnet Y2.5Ce0.5Fe2.5Ga2.5O12

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

X-ray powder diffraction, X-ray photoelectron, and Mössbauer spectroscopy are used to study the ionic and phase compositions of samples of powdered ferrogarnet Y2.5Ce0.5Fe2.5Ga2.5O12 obtained by gel combustion followed by crystallization in vacuum and additional annealing in air at 750°С. According to X-ray photoelectron and Mössbauer spectroscopy data, the iron and cerium cations in the homogeneous ferrogarnet structure are stabilized in the formal oxidation state Fe3+. At the same time, along with Ce3+, the surface of Y2.5Ce0.5Fe2.5Ga2.5O12 particles contains Ce4+ ions. The results obtained can be used to create functional materials for a new generation of magnetooptical devices.

About the authors

Yu. A. Teterin

Moscow State University; National Research Center “Kurchatov Institute”

Email: ketsko@igic.ras.ru
119991, Moscow, Russia; 123182, Moscow, Russia

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

K. I. Maslakov

Moscow State University

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

A. Yu. Teterin

National Research Center “Kurchatov Institute,”

Email: ketsko@igic.ras.ru
123182, Moscow, Russia

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

Ya. S. Glazkova

Moscow State University

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

A. N. Sobolev

Moscow State University

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

I. A. Presnyakov

Moscow State University

Email: ketsko@igic.ras.ru
119991, Moscow, Russia

V. A. Ketsko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: ketsko@igic.ras.ru
123182, Moscow, Russia

References

  1. Garskaite E., Gibson K., Leleckaite A. et al. // Chem. Phys. 2006. V. 323. P. 204. https://doi.org/10.1016/j.chemphys.2005.08.055
  2. Park M.B., Cho N.H. // J. Magn. Magn. Mater. 2001. V. 231. P. 253. https://doi.org/10.1016/S0304-8853(01)00068-3
  3. Onbasli M.C., Goto T., Sun X. et al. // Opt. Express. 2014. V. 22. P. 25183. https://doi.org/10.1364/OE.22.025183
  4. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
  5. Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948-016-3880-9
  6. Huang M., Zhang S. // Appl. Phys. A. 2022. V. 74. P. 177. https://doi.org/10.1007/s003390100883
  7. Ibrahim N.B., Edwards C., Palmer S.B. // J. Magn. Magn. Mater. 2000. V. 220. P. 183. https://doi.org/10.1016/S0304-8853(00)00331-0
  8. Dastjerdi O.D., Shokrollahi H., Yang H. // Ceramics Int. 2020. V. 46 (315). P. 2709. https://doi.org/10.1016/j.ceramint.2019.09.261
  9. Xu H., Yang H. // J. Mater Sci: Mater Electron. 2008. V. 19. P. 589. https://doi.org/10.1007/s10854-007-9394-2
  10. Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  11. Gilleo M.A., Geller S. // Phys. Rev. 1958. V. 110. Issue 1. P. 73. https://doi.org/10.1103/PhysRev.110.73
  12. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  13. Smirnova M.N., Nikiforova G.E., Goeva L.V. // Ceramics Int. 2018. V. 45 (4). P. 4509. https://doi.org/10.1016/j.ceramint.2018.11.133
  14. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Phys. Chem. Mathem. 2021. V. 12. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217
  15. Teterin Yu.A., Smirnova M.N., Maslakov K.I. et al. // Dokl. Phys. Chem. 2022. V. 503. Part 2. P. 45. https://doi.org/10.1134/S0012501622040029
  16. Смирнова М.Н., Гоева Л.В., Симоненко Н.П. и др. // Журн. неорган. химии. 2016. Т. 61. С. 1354. https://doi.org/10.1134/S0036023616100193
  17. Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411. https://doi.org/10.1134/S0036023618040198
  18. Shirley D. // Phys. Rev. B. 1972. V. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709
  19. Панов А.Д. Пакет программ обработки спектров SPRO и язык программирования. М.: Ин-т атом. энергии, 1997. 31 с.
  20. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178.
  21. Maslakov K.I., Teterin Yu.A., Popel A.J. et al. // Appl. Surf. Sci. 2018. V. 448. P. 154. https://doi.org/10.1016/j.apsusc.2018.04.077
  22. Maslakov K.I., Teterin Yu.A., Ryzhkov M.V. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 16167. https://doi.org/10.1134/S0036024421060212
  23. Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2002. V. 717. № 5. P. 347. https://doi.org/10.1070/RC2002v071n05ABEH00071
  24. Sawatzky G.A., van der Woude F., Morrish A.H. // Phys. Rev. 1969. V. 183. P. 383.
  25. Belogurov V.N., Bilinkin V. // Phys. Status Solid. (A). 1981. V. 63. P. 45.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (91KB)
3.

Download (156KB)
4.

Download (140KB)
5.

Download (159KB)
6.

Download (406KB)
7.

Download (430KB)

Copyright (c) 2023 Ю.А. Тетерин, М.Н. Смирнова, К.И. Маслаков, А.Ю. Тетерин, Г.Е. Никифорова, Я.С. Глазкова, А.Н. Соболев, И.А. Пресняков, В.А. Кецко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies