НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УЛК 535.373.1

$Ba_2Gd_{2-x}Sm_xGe_4O_{13}$: ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА, ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДЛЯ БЕСКОНТАКТНОЙ ТЕРМОМЕТРИИ И СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ

© 2023 г. А. В. Чванова^{а, *}, О. А. Липина^а, А. Ю. Чуфаров^а, А. П. Тютюнник^а, Я. В. Бакланова^а, Л. Л. Сурат^а, В. Г. Зубков^а

^aИнститут химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия *e-mail: chvanova10_99@mail.ru
Поступила в редакцию 15.08.2022 г.

После доработки 26.09.2022 г. Принята к публикации 30.09.2022 г.

Тетрагерманаты $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x=0.025-0.8) получены твердофазным методом. Твердые растворы кристаллизуются в моноклинной сингонии (пр. гр. C2/c, Z=4) и являются представителями немногочисленного класса неорганических соединений, содержащих в своей структуре анионы $[Ge_4O_{13}]^{10-}$. Изучены фотолюминесцентные свойства германатов при возбуждении излучением с $\lambda_{\rm ex}=275$ нм. Спектры соединений содержат широкую полосу с максимумом при 313 нм и набор линий в области 525-730 нм, соответствующие внутриконфигурационным 4f-4f-переходам в ионах Gd^{3+} и Sm^{3+} . Обнаружено, что максимальной интенсивностью свечения обладает германат $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$. Для данного образца изучены цветовые характеристики и исследованы температурные зависимости отношений интенсивностей основных люминесцентных полос при нагреве до 498 К. На основании полученных данных сделан вывод о возможности применения $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ в качестве материала для бесконтактной термометрии и светоизлучающих диодов.

Ключевые слова: люминесценция, германат, самарий **DOI:** 10.31857/S0044457X22601353. **EDN:** JCHJRU

ВВЕДЕНИЕ

В связи с усложнением различных инженерных устройств, а также интенсивными разработками в сфере создания систем автоматического управления и контроля возрастает необходимость прецизионного, в большинстве случаев бесконтактного, измерения ряда физических параметров. На сегодняшний день одним из наиболее перспективных и точных методов оперативного получения информации о температуре объектов является люминесцентная термометрия [1-3]. По сравнению с пирометрией данный метод менее чувствителен к рассеянному свету и чистоте оптической системы, что позволяет осуществлять точное определение температуры вблизи пламени или внутри камеры сгорания. Для проведения измерений люминесцентный материал наносят тонким слоем на исследуемую поверхность и затем проводят измерения температурно-зависимых характеристик: времени жизни возбужденных состояний, формы эмиссионной линии либо отношения интенсивностей двух эмиссионных полос (fluorescence intensity ratio — FIR) в спектре люминесценции. Последний способ измерения

обладает рядом преимуществ, среди которых высокая чувствительность и простая схемотехника детектирующей электроники, независимость измеряемой величины от флуктуаций интенсивности и энергии возбуждающего излучения, возможность осуществлять точные измерения в закрытых системах и при неблагоприятных условиях (например, в химически агрессивных средах) [3].

Традиционно в качестве аналитических линий для FIR-термометрии рассматривают эмиссионные полосы, обусловленные переходами с двух близкорасположенных (термически связанных) уровней в ионах ${\rm Er}^{3+}$, ${\rm Tm}^{3+}$, ${\rm Dy}^{3+}$, ${\rm Eu}^{3+}$, ${\rm Sm}^{3+}$, ${\rm Ho}^{3+}$ или ${\rm Nd}^{3+}$ [1, 3]. В случае ${\rm Sm}^{3+}$ такими уровнями являются ${}^4{\rm G}_{5/2}$ и ${}^4{\rm F}_{3/2}$ [4—6]. Величина энергетического зазора между указанными состояниями ($\Delta E_{21} \sim 0.124$ эВ) сравнима с энергией тепловых колебаний, поэтому в условиях термодинамического равновесия отношение заселенностей данных уровней (N_2/N_1) определяется распределением Больцмана [1, 4, 7]:

$$N_2/N_1 = (g_2/g_1)\exp(\Delta E_{21}/k_B T),$$
 (1)

где ΔE_{21} — энергетический зазор между двумя уровнями, эВ; $k_{\rm B}$ — константа Больцмана, равная 8.617×10^{-5} эВ ${\rm K}^{-1}$; T — температура, ${\rm K}$; g_2 и g_1 — степени или кратности вырождения уровней.

Повышение температуры способствует увеличению заселенности вышележащего состояния ${}^4F_{3/2}$ за счет переходов с нижележащего ${}^4G_{5/2}$ уровня, что отражается на интенсивности соответствующих полос в области 525—730 нм и, следовательно, на их соотношении — FIR [5, 6]. Взаимосвязь FIR = f(T) может быть описана следующим уравнением:

$$FIR = A \exp(-\Delta E_{21}/k_B T). \tag{2}$$

Кроме того, хотелось бы отметить, что Sm³⁺ является одним из наиболее широко используемых редкоземельных ионов, вводимых в подрешетку соединений для создания люминофоров оранжево-красного свечения [8]. Богатая структура энергетических уровней иона позволяет осуществлять возбуждение как УФ-излучением, так и излучением с λ_{ex} ~ 406 нм. В литературе имеются многочисленные данные по оптическим свойствам соединений, активированных Sm³⁺, являющихся перспективными люминофорами для светоизлучающих диодов, особое место среди них занимают фазы на основе силикатов и германатов:
$$\begin{split} &Sr_2Ga_2GeO_7, M_3Y_2Ge_3O_{12} \, (M=Ca, Mg), CaLa_4Si_3O_{13}, \\ &M_2SiO_4 \quad (M=Ba, Sr, Ca), \quad NaY_9(SiO_4)_6O_2, \end{split}$$
 $CaAl_2(SiO_4)_2Cl_2$ [9–16]. Авторы отмечают высокую термическую стабильность оптических характеристик образцов. Так, для $Mg_3Y_2Ge_3O_{12}:0.04Sm^{3+}$ уменьшение интенсивности при нагреве до 473 К составляет всего 3.6% от значения, измеренного при комнатной температуре. Созданный с использованием данного люминофора светодиод обладает низким значением коррелированной цветовой температуры (ССТ = 4881 К) и высоким индексом цветопередачи ($R_a = 91.1$) [10].

В настоящей работе впервые изучена кристаллическая структура и люминесцентные свойства тетрагерманатов $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x = 0.025– 0.8), полученных твердофазным методом. Данное семейство относится к немногочисленному классу неорганических соединений, в структуре которых присутствуют зигзагообразные анионы $[Ge_4O_{13}]^{10-}$, продолжающие ряд островных групп $[{\rm GeO_4}]^{4-} - [{\rm Ge_2O_7}]^{6-} - [{\rm Ge_3O_{10}}]^{8-}$. Первый представитель класса тетрагерманатов — $Na_4Sc_2Ge_4O_{13}$ был исследован в 1973 г. в работе [17]. Помимо данного соединения на сегодняшний день описана кристаллическая структура $Cu_2Fe_2Ge_4O_{13}$ [18], $Cu_2Sc_2(Ge_4O_{13})$ [19], $ASr_2V_3O_3(Ge_4O_{13})Cl$ (A = Na, K) [20], $Na_4Y_2 - {}_xLn_xGe_4O_{13}$ (Ln = Eu, Tb, Yb/Er), $Na_4Yb_{1.8}Er_{0.2}Ge_4O_{13}$ [21], $Ba_2RE_2Ge_4O_{13}$ (RE = Pr, Nd, Eu, Gd, Dy) и Ba₂Gd_{2-x}Eu_xGe₄O₁₃ [22, 23]. По результатам исследований, проведенных для $Ba_2RE_2Ge_4O_{13}$ (RE = Pr, Nd, Eu, Gd, Dy) в 2021 г. [23], обнаружено, что данная серия тетрагерманатов обладает высокой химической и термической устойчивостью, все описанные соединения независимо от химического состава являются широкозонными полупроводниками. Таким образом, разработка новых люминофоров на основе $Ba_2Gd_2Ge_4O_{13}$, активированного ионами Sm^{3+} , является актуальной задачей в области как фундаментальной, так и прикладной неорганической химии и материаловедения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германаты $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x=0.025-0.1, $\Delta x=0.025$; x=0.1-0.8, $\Delta x=0.1$) были получены твердофазным методом. Для синтеза порошков использовали следующие вещества: $BaCO_3$ (99.9%), Gd_2O_3 (99.999%), GeO_2 (99.9%), Sm_2O_3 (99.999%). Исходные соединения смешивали в ступке и тщательно перетирали, затем подвергали стадийному отжигу при температурах 1073 K (20 ч), 1173 K (20 ч), 1273 K (20 ч), 1373 K (20 ч) и 1473 K (6 ч).

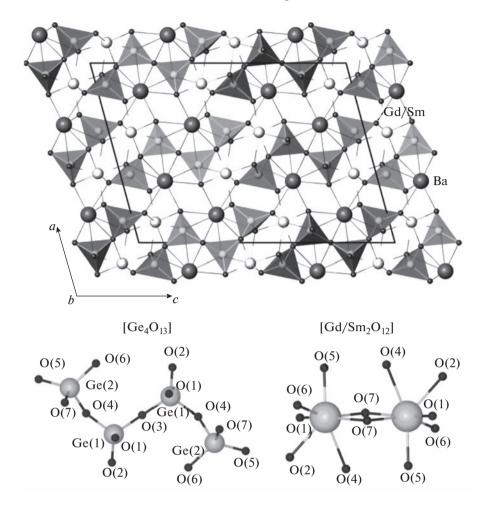
Рентгеноструктурный анализ синтезированных соединений осуществляли с помощью дифрактометра STADI-P (STOE), оснащенного линейным позиционно-чувствительным детектором. Съемку проводили в $CuK_{\alpha 1}$ -излучении в интервале углов $2\theta = 5^{\circ} - 120^{\circ}$ с шагом 0.02° . В качестве внутреннего стандарта использовали поликристаллический кремний с параметром элементарной ячейки a = 5.43075(5) Å. Уточнение структуры выполняли методом Ритвельда с использованием программного пакета GSAS [24, 25]. В качестве исходной модели для уточнения кристаллической структуры синтезированных германатов использовали данные, полученные для $Ba_2Gd_2Ge_4O_{13}$ [23]. Исследование микроструктуры и морфологии образцов проводили на растровом электронном микроскопе JSM-6390. Спектры возбуждения и люминесценции были получены с помощью импульсного флуоресцентного спектрофотометра Cary Eclipse (Varian). В качестве источника возбуждения использовали импульсную ксеноновую лампу мощностью 75 кВт, длительность импульсов составляла 2 мкс, частота импульсов -80 Гц, разрешение по длинам волн -0.5 нм. Для проведения высокотемпературных измерений в диапазоне 298-498 К использовали термостат с оптическими окнами GS-21525 (Specac Ltd). Цветовые координаты были рассчитаны из спектров люминесценции с помощью кривых сложения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По результатам рентгенографических исследований было установлено, что все образцы

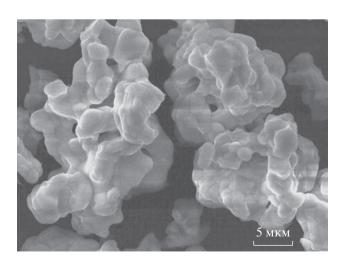
x	a, Å	$b, ext{\AA}$	$c, ext{\AA}$	β, град	V, Å ³
0.025	13.0754(4)	5.3694(2)	17.9929(6)	105.143(2)	1219.4(1)
0.05	13.0752(4)	5.3701(2)	17.9932(6)	105.150(2)	1219.5(1)
0.075	13.0761(4)	5.3703(2)	17.9935(6)	105.160(2)	1219.6(1)
0.1	13.0773(4)	5.3695(2)	17.9926(6)	105.143(2)	1219.6(1)
0.2	13.0798(4)	5.3712(2)	17.9949(6)	105.148(2)	1220.3(1)
0.3	13.0848(4)	5.3715(2)	17.9954(6)	105.148(2)	1220.9(1)
0.4	13.0864(4)	5.3727(2)	17.9967(6)	105.170(2)	1221.2(1)
0.5	13.0919(4)	5.3738(2)	17.9999(6)	105.153(2)	1222.3(1)
0.6	13.0928(4)	5.3750(2)	17.9998(6)	105.188(2)	1222.5(1)
0.7	13.0984(4)	5.3755(2)	18.0004(6)	105.166(2)	1223.3(1)
0.8	13.1013(4)	5.3767(2)	18.0007(6)	105.195(2)	1223.7(1)

Таблица 1. Параметры кристаллических решеток для твердых растворов $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x = 0.025-0.8)


Ва $_2$ Gd $_2$ $_x$ Sm $_x$ Ge $_4$ O $_{13}$ кристаллизуются в моноклинной сингонии (пр. гр. C2/c, Z=4). Экспериментальные, расчетные и разностные рентгенограммы для всех порошков представлены на рис. S1—S11. При увеличении степени допирования наблюдается закономерное увеличение кристаллографических параметров вследствие замещения ионов Gd $^{3+}$ ионами Sm $^{3+}$ с большим кристаллическим радиусом: CR VII (Gd $^{3+}$) = 1.14 Å, CR VII (Sm $^{3+}$) = 1.16 Å (табл. 1) [26].

Кристаллическая структура синтезированных германатов представлена на рис. 1. Четыре тетраэдра GeO₄, объединяясь посредством мостиковых атомов кислорода О(3) и О(4), образуют зигзагообразные анионы $[Ge_4O_{13}]^{10-}$. Каждая группа $[Ge_4O_{13}]^{10-}$ является симметричной: через центральный атом O(3) перпендикулярно плоскости (010) проходит ось симметрии второго порядка. Следует также отметить, что тетраэдры GeO₄, принадлежащие одной тетрагруппе, находятся в заслоненной конформации; ориентация этой группы меняется на зеркальную относительно плоскости (010) при движении вдоль направления [001]. Центральные тетраэдры $[Ge_4O_{13}]^{10-}$ связаны общим ребром O(2)—O(4) с искаженными полиэдрами (Gd/Sm)O₇. Последние соединяются друг с другом через общее ребро O(7)-O(7), образуя димеры $[Gd/Sm_2O_{12}]$, что приводит к "сшиванию" слоев, состоящих из разнонаправленных цепочек [Ge₄O₁₃]. Атомы Ва располагаются в пустотах между многогранниками и координированы десятью атомами кислорода. Полиэдры BaO_{10} соединяются через грани O(1)-O(3)-O(1)и образуют зигзагообразные цепочки вдоль направления [100].

Методом сканирующей электронной микроскопии была исследована морфология поверхности образцов и обнаружено, что порошки $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ состоят из спеченных агломератов, сформированных из частиц субмикронного размера (рис. 2).


Под действием УФ-излучения ($\lambda_{ex} = 275$ нм) германаты $BaGd_{2-x}Sm_xGe_4O_{13}$ люминесцируют в области 300-730 нм. В качестве примера на рис. 3 приведен спектр люминесценции образца $BaGd_{1.95}Sm_{0.05}Ge_4O_{13}$. Спектр содержит широкую полосу с максимумом при 313 нм, соответствующую переходу ${}^6P_{7/2} \to {}^8S_{7/2}$ в ионах Gd^{3+} , а также четыре характерные линии в видимой области спектра, связанные с переходами из возбужденного ${}^4G_{5/2}$ -состояния ионов Sm $^{3+}$. Интенсивная полоса с максимумом при 602 нм соответствует электродипольному переходу ${}^4{
m G}_{5/2}
ightarrow {}^6{
m H}_{7/2}$, в то время как пики при 565, 650 и 711 нм обусловлены переходами ${}^4{
m G}_{5/2}
ightarrow {}^6{
m H}_{5/2},\, {}^4{
m G}_{5/2}
ightarrow {}^6{
m H}_{9/2}$ и ${}^4{
m G}_{5/2}
ightarrow$ \rightarrow ⁶H_{11/2} соответственно (рис. 4). Для всех образцов $Ba_2Gd_2 - _xSm_xGe_4O_{13}$ был рассчитан коэффициент асимметрии R, равный отношению интегральных интенсивностей линий, связанных с переходами ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$ и ${}^4G_{5/2} \rightarrow {}^6H_{5/2}$. Установлено, что во всем концентрационном интервале величина R не изменяется и составляет 3.8, что указывает на отсутствие каких-либо изменений в координационном окружении ионов Sm^{3+} .

Максимум интенсивности люминесценции наблюдается для состава с x = 0.05, дальнейшее увеличение содержания допанта приводит к уменьшению интенсивности эмиссии (вставка на рис. 3). Отметим, что тушение люминесценции при относительно низких концентрациях легирующей примеси довольно часто наблюдается в соединениях, активированных Sm^{3+} , и обусловлено процессами кроссрелаксации в соседних парах Sm^{3+} — Sm^{3+} . Как видно из представленной на рис. 4 диаграммы энергетических уровней, между уров-

Рис. 1. Проекция кристаллической структуры $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ на плоскость (010).

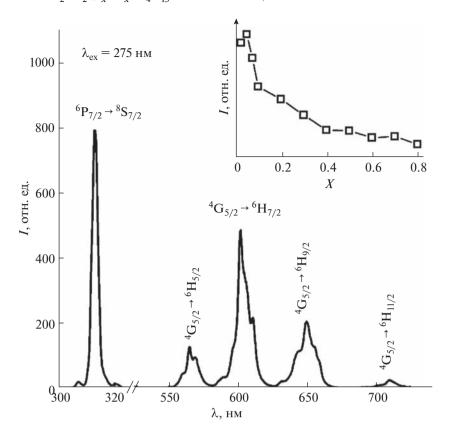
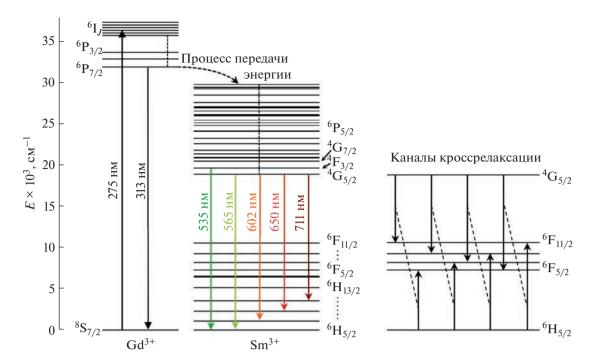

нями ${}^4G_{5/2}$ и ${}^6F_{11/2}$ существует значительный энергетический зазор, в то время как между основным (${}^6H_{5/2}$) и вышележащим (${}^6F_{11/2}$) состояниями рас-

Рис. 2. СЭМ-изображение порошка $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$.

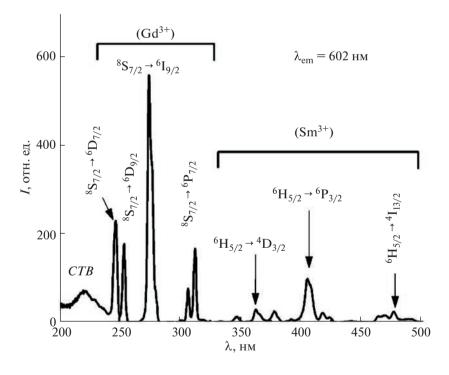
положено большое количество близких по энергии уровней. Перечисленные особенности электронной структуры позволяют иону Sm^{3+} , находящемуся в возбужденном ${}^4G_{5/2}$ -состоянии, передавать часть энергии соседнему невозбужденному иону, что приводит к их совместному переходу на промежуточные 6F_n -уровни (n=11/2, 9/2, 7/2, 5/2). В результате кросс-релаксационного процесса могут быть реализованы следующие переходы: ${}^4G_{5/2} + {}^6H_{5/2} \rightarrow {}^6F_{11/2} + {}^6F_{5/2}$, ${}^4G_{5/2} + {}^6H_{5/2} \rightarrow {}^6F_{9/2} + {}^6F_{7/2}$, ${}^4G_{5/2} + {}^6H_{5/2} \rightarrow {}^6F_{7/2} + {}^6F_{9/2}$ и ${}^4G_{5/2} + {}^6H_{5/2} \rightarrow {}^6F_{5/2} + {}^6F_{11/2}$ [5, 27, 28], после чего происходит безызлучательный многофононный распад до основного ${}^6H_{5/2}$ -состояния (рис. 4).

На рис. 5 приведен спектр возбуждения для оптимального состава $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$. Спектр состоит из набора узких характерных линий, относящихся к 4f—4f-переходам в ионах Sm^{3+} и Gd^{3+} , а также широкой полосы с максимумом при 230 нм, связанной с переносом заряда между Sm^{3+} и O^{2-} (СТВ). Примечательно, что линии с максимумами при 246 и 275 нм, обуслов-

Рис. 3. Спектр фотолюминесценции ($\lambda_{\rm ex}$ = 275 нм) образца ${\rm Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}}$, на вставке представлена концентрационная зависимость интегральной интенсивности люминесценции для германатов ${\rm Ba_2Gd_{2-}}_x{\rm Sm}_x{\rm Ge_4O_{13}}$.


ленные ${}^8\mathrm{S}_{7/2} \to {}^6\mathrm{D}_{7/2}$ - и ${}^8\mathrm{S}_{7/2} \to {}^6\mathrm{I}_{9/2}$ -переходами в ионах Gd³⁺, обладают наибольшей интенсивностью по сравнению с линиями в области 330-500 нм, связанными с переходами в ионах Sm³⁺. Данное обстоятельство свидетельствует о высокой эффективности передачи энергии от Gd^{3+} к Sm^{3+} . Сенсибилизация люминесценции ионов ионами Gd³⁺ ранее наблюдалась для сцинтилляционных стекол $CaO-Gd_2O_3-SiO_2-B_2O_3$, содопированных Gd^{3+} и Sm^{3+} [29], а также в боратах $Gd_{1-x}Sm_xAl_3(BO_3)_4$ [30]. Наличие множества интенсивных полос в области 240-330 нм делает $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ привлекательным для возбуждения излучением коммерческих источников, в частности светодиодов диапазона UV-C (глубокий У Φ , $\lambda_{ex} = 275$ нм) с подложкой из нитрида алюминия, разработанных сравнительно недавно и демонстрирующих высокую интенсивность излучения и линейность ватт-амперных характеристик [31].

Для оценки времени жизни возбужденного ${}^4G_{5/2}$ -состояния были измерены кривые затухания люминесценции ($\lambda_{\rm ex}=275$ нм, $\lambda_{\rm em}=602$ нм, переход ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$). С увеличением концентра-


ции Sm^{3+} найденное время жизни уменьшается с 2.1 до 1.29 мс (рис. 6).

Для германата $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ была дополнительно изучена термическая стабильность оптических характеристик в интервале температур 298-498 К. На рис. 7а представлены спектры люминесценции образца, снятые в режиме ступенчатого нагрева. Обращает на себя внимание неравномерное изменение интенсивности основных эмиссионных полос (рис. 76). Наибольшее снижение интенсивности (~17%) наблюдается для пиков, расположенных в области 310-319 нм и 582–626 нм (*3*), обусловленных электронными переходами $^6P_{7/2} \to {}^8S_{7/2}$ в ионах Gd^{3+} и $^4G_{5/2} \to$ \to $^6H_{7/2}$ в ионах Sm^{3+} соответственно. Для линии в диапазоне 626–675 нм (4, ${}^4{
m G}_{5/2}
ightarrow {}^6{
m H}_{9/2}$) спад не такой существенный ($I_{498 \text{ K}} = 0.92 I_{298 \text{ K}}$), в то время как для полосы при 542–582 нм (2, ${}^4G_{5/2} \rightarrow {}^6H_{5/2}$) наблюдается незначительный рост интенсивности ($I_{498 \text{ K}} = 1.09 I_{298 \text{ K}}$).

Согласно вставке на рис. 7а, нагрев люминофора приводит к постепенному увеличению интенсивности пиков при 525–542 нм (I, ${}^4\mathrm{F}_{3/2} \to {}^6\mathrm{H}_{5/2}$), это связано с возрастанием заселенно-

Рис. 4. Диаграммы энергетических уровней $4f^5$ -конфигурации ионов Sm³⁺ и $4f^7$ -конфигурации ионов Gd³⁺.

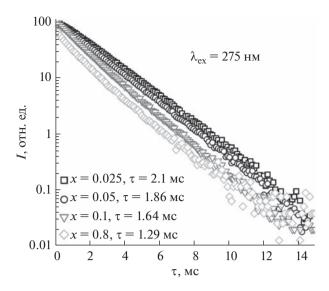


Рис. 5. Спектр возбуждения $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ (λ_{em} = 602 нм).

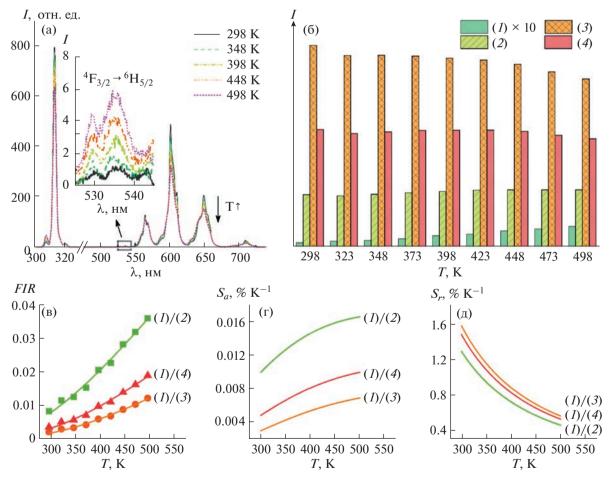
сти вышележащего ${}^4F_{3/2}$ -состояния за счет переходов с ${}^4G_{5/2}$ -уровня в ионах Sm³+ (рис. 4). На рис. 7в показано, как изменяется отношение (FIR) между $I_{525-542~{\rm HM}}$ и интенсивностью пиков, соответствующих переходам ${}^4G_{5/2} \rightarrow {}^6H_{5/2,~7/2,~9/2}$. Полу-

ченные зависимости хорошо описываются ($R^2 \ge 99.2\%$) уравнениями (3)—(5):

$$(1)/(2) = I_{525-542 \text{ HM}}/I_{542-582 \text{ HM}} = = 0.356 \exp(-1142.2/T),$$
(3)

Рис. 6. Кривые затухания люминесценции, измеренные для порошков $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x=0.025-0.8).

$$(1)/(3) = I_{525-542 \text{ HM}}/I_{582-626 \text{ HM}} = = 0.200 \exp(-1395.3/T),$$
(4)


$$(1)/(4) = I_{525-542 \text{ HM}}/I_{626-675 \text{ HM}} = = 0.260 \exp(-1307.9/T).$$
 (5)

Значение ΔE_{21} , определенное для $\mathrm{Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}}$ из представленных уравнений, составляет 794—970 см $^{-1}$ (0.098—0.120 эВ).

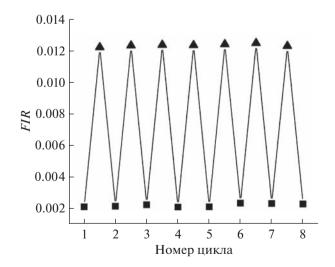
Одной из важнейших характеристик датчика температуры является его чувствительность, показывающая относительное изменение отношения интенсивностей флуоресценции при изменении температуры на один градус. Абсолютная и относительная чувствительность определения температуры для образца $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ была оценена следующим образом [1]:

$$S_a = dFIR/dT =$$

$$= (\Delta E_{21}/k_B T^2) [A \exp(-\Delta E_{21}/k_B T)],$$
(6)

Рис. 7. Спектры люминесценции германата $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$, измеренные при различной температуре нагрева (а); температурные зависимости интегральных интенсивностей люминесцентных линий, обусловленных переходами ${}^4F_{3/2} \rightarrow {}^6H_{5/2}$ (I), ${}^4G_{5/2} \rightarrow {}^4H_{5/2}$ (I), I0, I1, I2, I3, I3, I4, I4, I5, I5, I5, I5,

•					
Соединение	FIR	S_a (max), % K ⁻¹	S_r (max), % K ⁻¹	Температурный диапазон, К	Источник
Ba ₂ Gd ₂ Ge ₄ O ₁₃ :Sm ³⁺	$I(^4F_{3/2} \rightarrow ^6H_{5/2})/$	0.016	1.29	298-498	Настоящая
	$I(^{4}G_{5/2} \rightarrow {^{6}H}_{5/2})$				работа
$\begin{array}{c} \hline Ba_{2}Gd_{2}Ge_{4}O_{13}:Sm^{3+} \\ \\ Ba_{2}Gd_{2}Ge_{4}O_{13}:Sm^{3+} \\ \\ Ba_{2}Gd_{2}Ge_{4}O_{13}:Sm^{3+} \\ \\ Y_{3}Al_{5}O_{12}:Sm^{3+} \\ \\ GdVO_{4}:Sm^{3+} \\ \end{array}$	$I(^4F_{3/2} \rightarrow ^6H_{5/2})/$	0.007	1.57	298-498	»
	$I(^4G_{5/2} \rightarrow {}^6H_{7/2})$				
$Ba_2Gd_2Ge_4O_{13}:Sm^{3+}$	$I(^4F_{3/2} \rightarrow ^6H_{5/2})/$	0.01	1.47	298-498	»
	$I(^4G_{5/2} \to {}^6H_{9/2})$				
$Y_3Al_5O_{12}:Sm^{3+}$	$I(^4F_{3/2} \to ^6H_{5/2})/$	0.0305	0.50	303-1178	[5]
	$I(^4G_{5/2} \rightarrow {}^6H_{5/2})$				
GdVO ₄ :Sm ³⁺	$I(^4F_{3/2} \rightarrow {}^6H_{5/2})/$	0.045	_	293-823	[6]
	$I(^4G_{\pi}) \rightarrow {}^6H_{\pi}$				


Таблица 2. Значения абсолютной (S_a) и относительной (S_r) чувствительности для различных соединений, активированных ионами Sm^{3+}

$$S_r = (1/\text{FIR})(d\text{FIR}/dT) = \Delta E_{21}/k_B T^2.$$
 (7)

Согласно рис. 7г, по мере увеличения температуры для всех рассмотренных комбинаций происходит постепенный рост абсолютной чувствительности. Достигнутые при $T=498~{\rm K}$ значения S_a , равные $0.007-0.016\%~{\rm K}^{-1}$, не являются предельными. Температура, при которой достигается максимум S_a , может быть вычислена с использованием уравнения [7]:

$$T_{\rm opt} = \Delta E_{21}/2k_{\rm B}. \tag{8}$$

Определенные значения $T_{\rm opt}$ для кривых (1)/(2), (1)/(3) и (1)/(4) составили 571, 697 и 653 К соответственно.

Рис. 8. Зависимость FIR от температуры при многократном повторении измерения: квадратами обозначены данные, полученные при T = 298 K, треугольниками — при T = 498 K.

Значения относительной чувствительности, напротив, уменьшаются с температурой (рис. 7д). Максимальное значение $S_r = 1.57\%~{\rm K}^{-1}~(T=298~{\rm K})$ достигается для кривой $(I)/(3)~(I_{525-542~{\rm Hm}}/I_{582-626~{\rm Hm}},$ переходы $^4{\rm F}_{3/2} \rightarrow ^6{\rm H}_{5/2}~{\rm u}~^4{\rm G}_{5/2} \rightarrow ^6{\rm H}_{7/2}).$ Отметим, что данное значение является одним из наиболее высоких значений S_r , полученных при комнатной температуре для случаев, когда в качестве аналитических используют линии, обусловленные переходами с термически связанных уровней ионов лантаноидов [4]. Определенные значения S_a и S_r представлены в табл. 2 совместно с ранее опубликованными данными для ${\rm Y_3Al_5O_{12}:Sm^{3+}}$ и ${\rm GdVO_4:Sm^{3+}}$ [5, 6].

На рис. 8 представлена зависимость FIR для германата $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ при многократном повторении измерения (T=298 и 498 K). Как видно из представленных данных, для обеих температур наблюдается хорошая воспроизводимость получаемых величин, что позволяет говорить о перспективности дальнейшего использования $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ в качестве чувствительного элемента бесконтактного датчика температуры.

На заключительном этапе работы для образца $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ были рассчитаны координаты цветности, коррелированная цветовая температура и чистота цвета в сравнении с Международным стандартом СІЕ 1931 г. ($\lambda_{ex}=275$ нм). Согласно диаграмме цветности, предложенной К.L. Kelly в 1943 г. [32], германат $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ во всем исследованном температурном интервале обладает оранжевым излучением с координатами x=0.600, y=0.396 при T=298 К и x=0.589, y=0.406 при T=498 К. Значение коррелированной цветовой температуры при этом варьируется в диапазоне 1620-1645 К, а чистота цвета, рассчи-

танная по координатам цветности белого источника света и доминирующей длины волны ($\lambda_{\rm em} = 602$ нм) достигает 91%. Полученные цветовые характеристики позволяют сделать вывод, что данный люминофор может быть использован для изготовления светодиодов с полупроводниковым чипом, излучающим в УФ-диапазоне длин волн ($\lambda_{\rm ex} = 275$ нм).

ЗАКЛЮЧЕНИЕ

Германаты $Ba_2Gd_{2-x}Sm_xGe_4O_{13}$ (x = 0.025-0.8) были синтезированы твердофазным методом. Все соединения кристаллизуются в моноклинной сингонии, пр. гр. C2/c, Z = 4. Спектры люминесценции ($\lambda_{ex} = 275$ нм) состоят из слабоструктурированных полос в области 300-730 нм, связанных с переходом $^6\mathrm{P}_{7/2} \to {}^8\mathrm{S}_{7/2}$ в ионах Gd^{3+} и переходами $^4\mathrm{F}_{3/2} \to {}^6\mathrm{H}_{5/2}, {}^4\mathrm{G}_{5/2} \to {}^6\mathrm{H}_J (J=5/2,7/2,9/2,11/2)$ в ионах Sm³⁺. По результатам исследования концентрационной зависимости установлено, что максимальной интенсивностью эмиссии обладает германат $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$, для которого впоследствии были изучены температурные зависимости оптических характеристик, рассчитаны координаты цветности, коррелированная цветовая температура и чистота цвета в интервале 298-498 К. Высокие значения S_r (1.29—1.57% K⁻¹) позволяют говорить о перспективности дальнейшего использования $Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13}$ в качестве люминесцентного материала для проведения бесконтактной термометрии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках гос. задания ИХТТ УрО РАН, тема AAAA-A19-119031890025-9.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Описание материалов (рис. S1–S11. Экспериментальная, расчетная и разностная рентгеновские порошковые дифрактограммы $Ba_2Gd_{1.975}Sm_{0.025}Ge_4O_{13},\\ Ba_2Gd_{1.95}Sm_{0.05}Ge_4O_{13},\\ Ba_2Gd_{1.95}Sm_{0.1}Ge_4O_{13},\\ Ba_2Gd_{1.9}Sm_{0.1}Ge_4O_{13},\\ Ba_2Gd_{1.7}Sm_{0.3}Ge_4O_{13},\\ Ba_2Gd_{1.5}Sm_{0.5}Ge_4O_{13},\\ Ba_2Gd_{1.5}Sm_{0.5}Ge_4O_{13},\\ Ba_2Gd_{1.3}Sm_{0.7}Ge_4O_{13},\\ Ba_2Gd_{1.7}Sm_{0.7}Ge_4O_{13},\\ Ba_2Gd$

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Brites C.D.S., Millán A., Carlos L.D. // Handb. Phys. Chem. Rare Earths. 2016. V. 49. P. 339. https://doi.org/10.1016/bs.hpcre.2016.03.005
- Brites C.D.S., Lima P.P., Silva et al. // Nanoscale. 2012.
 V. 4. P. 4799. https://doi.org/10.1039/C2NR30663H
- 3. *Rai V.K., Rai S.B.* // Appl. Phys. B. 2007. V. 87. P. 323. https://doi.org/10.1007/s00340-007-2592-z
- 4. *Dramićanin M.* Chapter 6 Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing in Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing Series in Electronic and Optical Materials. 2018. P. 113–157.
- Zhu K., Zhou H., Qiu J. et al. // J. Alloys Compd. 2021.
 V. 890. P. 161844. https://doi.org/10.1016/j.jallcom.2021.161844
- Nikolić M.G., Jovanović D.J., Đorđević V. et al. // Phys. Scr. 2012. P. 014063. https://doi.org/10.1088/0031-8949/2012/T149/014063
- Suta M., Mejerink A. // Adv. Theory Simul. 2020. V. 3. P. 2000176. https://doi.org/10.1002/adts.202000176
- Li J., Yan J., Wen D. et al. // J. Mater. Chem. C. 2016.
 V. 4. P. 8611. https://doi.org/10.1039/C6TC02695H
- Ma Y., Tang S., Ji C. et al. // J. Lumin. 2022. V. 242. P. 118530. https://doi.org/10.1016/j.jlumin.2021.118530
- Ji C., Huang Z., Tian X. et al. // J. Alloys Compd. 2020.
 V. 825. P. 154176.
 https://doi.org/10.1016/j.jallcom.2020.154176
- 11. *Ji C.*, *Huang Z.*, *Tian X. et al.* // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
- Singh V., Lakshminarayana G., Singh N. // Optik. 2020.
 V. 211. P. 164272.
 https://doi.org/10.1016/j.ijleo.2020.164272
- 13. *Liu H.*, *Guo S.*, *Hao Y. et al.* // J. Lumin. 2012. V. 132. № 11. P. 2908. https://doi.org/10.1016/j.jlumin.2012.06.006
- Mei L., Liu H., Liao L. et al. // Scientif. Rep. 2017. V. 7.
 P. 15171. https://doi.org/10.1038/s41598-017-15595-z
- Helode S.J., Kadam A.R., Dhoble S.J. // Chem. Data Collect. 2020. V. 40. P. 100881. https://doi.org/10.1016/j.cdc.2022.100881
- 16. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1700. https://doi.org/10.1134/S0036023621120020
- 17. Горбунов Ю.А., Максимов Б.А., Белов Н.В. // Докл. AH СССР. 1973. T. 211. C. 591.
- Masuda T., Chakoumakos B.C., Nygren C.L. et al. // J. Solid State Chem. 2003. V. 176. P. 175. https://doi.org/10.1016/S0022-4596(03)00387-6
- Redhammer G.J., Roth G. // J. Solid State Chem. 2004.
 V. 177. P. 2714.
 https://doi.org/10.1016/j.jssc.2004.04.016

- 20. Sanjeewa L.D., McGuire M.A., McMillen C.D. et al. // Chem. Mater. 2017. V. 29. P. 1404. https://doi.org/10.1021/acs.chemmater.6b05320
- 21. *Ananias D., Paz F.A.A., Carlos L.D. et al.* // Eur. J. Inorg. Chem. 2018. V. 2018. № 20. P. 2444. https://doi.org/10.1002/ejic.201800153
- Tyutyunnik A.P., Chufarov A.Yu., Surat L.L. et al. // Mendeleev Commun. 2018. V. 28. P. 661. https://doi.org/10.1016/j.mencom.2018.11.035
- Lipina O.A., Surat L.L., Chufarov A.Y. et al. // Dalton Trans. 2021. V. 50. P. 10935. https://doi.org/10.1039/d1dt01780b
- 24. *Toby B.H.* // J. Appl. Crystallogr. B. 2001. V. 34. P. 210. https://doi.org/10.1107/S0021889801002242
- Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, NM, 2004.
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

- Ullah I., Shah S.K., Rooh G. et al. // Opt. Mater. 2021.
 V. 111. P. 110657.
 https://doi.org/10.1016/j.optmat.2020.110657
- 28. *Baklanova Y.V., Maksimova L.G., Lipina O.A. et al.* // J. Lumin. 2020. V. 224. P. 117315. https://doi.org/10.1016/j.jlumin.2020.117315
- Wantana N., Kaewjaeng S., Kothan S. et al. // J. Lumin. 2017. V. 181. P. 382. https://doi.org/10.1016/j.jlumin.2016.09.050
- 30. *He J.*, *Zhang S.*, *Zhou J. et al.* // Opt. Mater. 2015. V. 39. P. 81. https://doi.org/10.1016/j.optmat.2014.11.002
- 31. *Li Y., Dvořák M., Nesterenko P.N. et al.* // Sens. Actuators B. 2018. V. 255. P. 1238. https://doi.org/10.1016/j.snb.2017.08.085
- 32. *Kelly K.L.* // J. Opt. Soc. Am. 1943. V. 33. P. 627. https://doi.org/10.1364/JOSA.33.000627