Alginate–Chitosan Polyelectrolyte Complexes As Carriers for Fluorinated Tetraphenylporphyrin in Photosensitizing Systems of Singlet Oxygen Generation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Water-insoluble photosensitizing (PS) systems active in the generation of singlet 1O2 oxygen are obtained by immobilizing fluorinated tetraphenylporphyrin (FTPP) from a solution in acetone on films of polyelectrolyte complexes based on sodium alginate (SA) and chitosan (CT), and on solid water-insoluble gels of alginate and chitosan. The obtained polymer PS systems are used to establish the intensity of the photoluminescence of singlet oxygen in D2O and the activity of the photocatalytic oxidation of tryptophan in water. It is shown that the photocatalytic activity in the tryptophan oxidation of fluorinated tetraphenylporphyrin immobilized on a SA–CT polyelectrolyte complex and alginate solid gel is higher than that of FTPP immobilized on chitosan solid gel. Spectral-luminescent properties of polysaccharide–FTPP systems and the surface structure of carriers are studied via atomic force microscopy to determine the mechanism of the increase in porphyrin activity when it is fixed on alginate-containing carriers. It is suggested that aspects of the supramolecular structure of solid gels are responsible for the increase in the photocatalytic activity of FTPP upon immobilization on alginate-containing polysaccharide systems.

Sobre autores

A. Kopylov

Federal Research Center of Chemical Physics, Russian Academy of Sciences; Chemistry Department, Moscow State University

Email: via_cetra@mail.ru
119991, Moscow, Russia; 119991, Moscow, Russia

N. Aksenova

Federal Research Center of Chemical Physics, Russian Academy of Sciences; First Moscow State Medical University

Email: via_cetra@mail.ru
119991, Moscow, Russia; 119991, Moscow, Russia

I. Shershnev

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: via_cetra@mail.ru
119991, Moscow, Russia

V. Timofeeva

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: via_cetra@mail.ru
119991, Moscow, Russia

M. Savko

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: via_cetra@mail.ru
119991, Moscow, Russia

A. Cherkasova

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: via_cetra@mail.ru
119991, Moscow, Russia

T. Zarkhina

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: via_cetra@mail.ru
119991, Moscow, Russia

P. Timashev

Federal Research Center of Chemical Physics, Russian Academy of Sciences; First Moscow State Medical University; Chemistry Department, Moscow State University

Email: via_cetra@mail.ru
119991, Moscow, Russia; 119991, Moscow, Russia; 119991, Moscow, Russia

A. Solovieva

Federal Research Center of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: via_cetra@mail.ru
119991, Moscow, Russia

Bibliografia

  1. Deda D.K., Iglesias B.A., Alves E. et al. // Molecules 2020. V. 25. 2080. https://doi.org/10.3390/molecules25092080
  2. Solov’eva A.B., Aksenova N.A., Glagolev N.N. et al. // Russ. J. Phys. Chem. B. 2012. V. 6. P. 433. https://doi.org/10.1134/S1990793112060061
  3. Hampton S. // The Diabetic Foot. 2004. V. 7. P. 162.
  4. Salehi M., Ehterami A., Farzamfar S. et al. // Drug Deliv. and Transl. Res. 2021. V. 11. P. 142. https://doi.org/10.1007/s13346-020-00731-6
  5. Белозерская Г.Г, Кабак В.А., Макаров В.А. Патент РФ № 2660582, 2018.
  6. Castro K.A.D.F., Moura N.M.M., Figueira F. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 2522. https://doi.org/10.3390/ijms20102522
  7. Solovieva A.B., Rudenko T.G., Glagolev N.N. et al. // J. Photochem. Photobiol. B. 2020. V. 210. P. 111954. https://doi.org/10.1016/j.jphotobiol.2020.111954
  8. Sharma M., Dube A., Majumder S.K. // Lasers Med. Sci. 2021. V. 36. P. 763. https://doi.org/10.1007/s10103-020-03083-2
  9. Brovko O., Palamarchuk I., Gorshkova N. et al. // Izvestia Ufimskogo Nauchnogo Tsentra RAN. 2018. V. 2. P. 45. https://doi.org/10.31040/2222-8349-2018-2-3-45-49
  10. Kulig D., Zimoch-Korzycka A., Król Z. et al. // Molecules. 2017. V. 22. P. 98. https://doi.org/10.3390/molecules22010098
  11. Zare-Gachi M., Daemi H., Mohammadi J. et al. // Mater. Sci. Eng. C. 2020. V. 107. P. 110321. https://doi.org/10.1016/j.msec.2019.110321
  12. Shershnev I.V., Glagolev N.N., Bragina N.A. et al. // Russ. J. Phys. Chem. B. 2014. V. 8. P. 1095. https://doi.org/10.1134/S1990793114080119
  13. Kopylov A.S., Aksenova N.A., Savko M.A. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 444. https://doi.org/10.1134/S0036024422020133
  14. Demina T.S., Kuryanova A.S., Aksenova N.A. et al. // RSC Adv. 2019. V. 64. P. 37652. https://doi.org/10.1039/C9RA07667K
  15. Cherkasova A.V., Aksenova N.A., Zarkhina T.S. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 2563. https://doi.org/10.1134/S003602442211005X
  16. Zarkhina T.S., Aksenova N.A. and Solov’eva A.B. // Ibid. 2017. V. 91. P. 998. https://doi.org/10.1134/S0036024417060322
  17. Sadykova O.V., Krivandin A.V., Aksenova N.A. et al. // Polym. Sci. Ser. A. 2021. V. 63. P. 154. https://doi.org/10.1134/S0965545X21020103
  18. Singlet Oxygen Applications in Biosciences and Nanosciences. V. 1 / Ed. by Nonell S. and Flors C. Cambridge, 2016. P. 23.
  19. Brovko O.S., Palamarchuk I.A., Boitsova T.A. et al. // Macromol. Res. 2015. V. 23. P. 1059. https://doi.org/10.1007/s13233-015-3140-z
  20. Hermanto D., Mudasir M., Siswanta D. et al. // J. Math. Fundam. Sci. 2019. V. 51. P. 309. https://doi.org/10.5614/j.math.fund.sci.2019.51.3.8
  21. Ayarza J., Coello Y., Nakamatsu J. // Int. J. Polym. Anal. Charact. 2016. V. 22. P. 1. https://doi.org/10.1080/1023666X.2016.1219834
  22. Montembault A., Viton C., Domard A. // Biomacromolecules. 2005. V. 6. P. 653. https://doi.org/10.1021/bm049593m
  23. Klimenko I.V., Gradova M.A., Gradov O.V. et al. // Khimicheskaya Fizika. 2020. V. 39. P. 43. https://doi.org/10.31857/S0207401X20050076
  24. Solovieva A.B., Belyaev V.E., Glagolev N.N. et al. // Russ. J. Phys. Chem. A. 2005. V. 79. P. 635.
  25. Зенькевич Э.И. // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2017. Т. 61. С. 110.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (92KB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (231KB)
7.

Baixar (180KB)
8.

Baixar (75KB)

Declaração de direitos autorais © А.С. Копылов, Н.А. Аксенова, И.В. Шершнев, В.А. Тимофеева, М.А. Савко, А.В. Черкасова, Т.С. Зархина, П.С. Тимашев, А.Б. Соловьева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies