Electrical Conductivity and Thermodynamics of Ion Association of Ammonium Ionic Liquids in Acetone

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electrical conductivity of a number of tetraalkylammonium ionic liquids with tetrafluoroborate anion has been studied in acetone in the temperature range 298–313 K. Based on the obtained conductometric data for the compounds under study, the Lee–Wheaton method has been used to calculate the ion association constants (Ka), limiting molar electrical conductivities (λ0), and Gibbs association energy (ΔG0) in solutions. From the temperature dependence of equivalent electrical conductivity, the values of association enthalpy (ΔH0) and entropy (ΔS0) have been calculated. For all studied compounds, the Walden–Pisarzhevsky product has been calculated. Conclusions are drawn about the influence of the structure of the studied ionic liquids on the thermodynamic parameters of association in acetone solutions.

Sobre autores

O. Zhuravlev

Tver State University

Email: pifchem@mail.ru
Tver, Russia

A. Kaftanov

Tver State University

Email: pifchem@mail.ru
Tver, Russia

G. Yulmasov

Tver State University

Autor responsável pela correspondência
Email: pifchem@mail.ru
Tver, Russia

Bibliografia

  1. Welton T. // Chem. Rev. 1999. V. 99. P. 2071. https://doi.org/10.1021/cr980032t
  2. Ohno H. Electrochemical Aspects of Ionic Liquids. New York: John Wiley and Sons, 2005. 408 p.
  3. Hapiot P., Lagrost C. // Chem. Rev. 2008. V. 108. P. 2238. https://doi.org/10.1021/cr0680686
  4. Lagrost C., Hapiot P., Vaultier M. // Green Chem. 2005. V. 7. P. 468. https://doi.org/10.1039/B500839E
  5. Galinski M., Lewandowski A., Stepniak I. // Electrochim. Acta. 2006. V. 51. P. 5567. https://doi.org/10.1016/j.electacta.2006.03.016
  6. Hagiwara R., Hirashige T., Tsuda T., Ito Y. // J. Electrochem. Soc. 2002. V. 149. P. 1. https://doi.org/10.1149/1.1421606
  7. Tian W., Gao Q., Tan Y., Li Z. // Carbon. 2017. V. 119. P. 287. https://doi.org/10.1016/j.carbon.2017.04.050
  8. Dong X.-L., Wang S.-Q., He B., Li W.-C. // Microporous Mesoporous Mater. 2017. V. 259. P. 229. https://doi.org/10.1016/j.micromeso.2017.06.011
  9. Padilha J.C., Basso J., Trindade L.G. et al.// J. Power Sources. 2010. V. 195. P. 6483. https://doi.org/10.1016/j.jpowsour.2010.04.035
  10. Borra E.F., Seddiki O., Angel R. et al.// Nature. 2007. V. 447. P. 979. https://doi.org/10.1038/nature05909
  11. Ventura S.P.M., Silva F.A., Quental M.V. et al.// Chem. Rev. 2017. V. 117. P. 6984. https://doi.org/10.1021/acs.chemrev.6b00550
  12. Borun A., Bald A. // Ionics. 2016. V. 22. P. 859. https://doi.org/10.1007/s11581-015-1613-x
  13. Papovic S., Gadz S., Bester-rogac M., Vranes M. // J. Chem. Thermodyn. 2016. V. 102. P. 367. https://doi.org/10.1016/j.jct.2016.07.039
  14. Lam P.H., Tran A.T., Walczyk D.J. et al. // J. Mol. Liq. 2017. V. 246. P. 215. https://doi.org/10.1016/j.molliq.2017.09.070
  15. Timperman L., Galiano H., Lemordant D., Anouti M. // Electrochem. Commun. 2011. V. 13. P. 1112. https://doi.org/10.1016/j.elecom.2011.07.010
  16. Kalugin O.N., Voroshylova I.V., Riabchunova A.V. et al. // Electrochim. Acta. 2013. V. 105. P. 188. https://doi.org/10.1016/j.electacta.2013.04.140
  17. Журавлев О.Е., Никольский В.М., Ворончихина Л.И. // ЖПХ. 2013. Т. 86. № 6. С. 881; Zhuravlev O.E., Nikol’skii V.M., Voronchikhina L.I. // Russ. J. Appl. Chem. 2013. V. 86. P. 824. https://doi.org/10.1134/S1070427213060062
  18. Safonova L.P., Kolker A.M. // Russ. Chem. Rev. 1992. V. 61. № 9. P. 959. https://doi.org/10.1070/RC1992v061n09ABEH001009
  19. Lee W.H., Wheaton R.J. // J. Chem. Soc. Faraday Trans. 1978. Part 2. V. 74. № 4. P. 743. https://www.doi.org/10.1039/F29787400743
  20. Lee W.H., Wheaton R.J. // Ibid.1978. Part 2. V. 74. № 8. P. 1456. https://www.doi.org/10.1039/F29787401456
  21. Lee W.H., Wheaton R.J. // Ibid.1979. Part 2. V. 75. № 8. P. 1128. https://www.doi.org/10.1039/f29797501128
  22. Pethybridge A.D., Taba S.S. // Ibid.1980. Part 1. V. 76. № 9. P. 368. https://www.doi.org/10.1039/F19807600368
  23. Короткова Е.Н. Электропроводность и термодинамические характеристики ассоциации двух ионных жидкостей в ацетонитриле и диметилсульфоксиде и закономерности нагрева растворов микроволновым излучением: Дис. … канд. хим. наук. М.: Российский химико-технологический университет имени Д.И. Менделеева, 2016. 164 с.
  24. Журавлев О.Е. // Журн. физ. химии. 2021. Т. 95. № 2. С. 226; Zhuravlev O.E. // Russ. J. Phys. Chem. A. 2021. V. 95. № 2. P. 298. https://www.doi.org/10.1134/S0036024421020308
  25. Журавлев О.Е. // Там же. 2021. Т. 95. № 12. С. 1922; Zhuravlev O.E. // Ibid. 2021. V. 95. № 12. P. 2503. https://www.doi.org/10.1134/S0036024421120244
  26. Чумак В.Л., Максимюк М.Р., Нешта Т.В. и др. // Восточно-Европейский журнал передовых технологий. 2013. Т. 62. № 2/5. С. 59.
  27. Краткий справочник физико-химических величин / Под ред. К.П. Мищенко, А.А. Равделя. Л.: Химия, 1974. 200 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (29KB)
3.

Baixar (272KB)
4.

Baixar (9KB)
5.

Baixar (9KB)
6.

Baixar (9KB)
7.

Baixar (81KB)
8.

Baixar (40KB)

Declaração de direitos autorais © О.Е. Журавлев, А.Д. Кафтанов, Г.С. Юлмасов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies