Volumetric Properties of a Solution of tert-Butyl Alcohol in Carbon Tetrachloride: MD Modeling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Models of solutions of tert-butyl alcohol (TBA) in carbon tetrachloride (CTC) are obtained via all-atom molecular dynamics modeling. The excess volume of the solution and the apparent and intrinsic (geometric) volumes of both components are calculated throughout the range of concentrations. It is shown that the apparent and intrinsic molar volumes of TBA in the limit of low concentrations in solution are notably larger than in pure alcohol. At the same time, their values fall rapidly in a narrow range of concentrations (from 0 to 0.1 mole fractions), and then move almost linearly to their limit values in alcohol. It is found that such behavior of the volumetric characteristics of TBA is due to the specific association of alcohol at low concentrations because of the hydrogen bonding among TBA molecules.

Sobre autores

A. Anikeenko

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences

Email: anik@kinetics.nsc.ru
630090, Novosibirsk, Russia

N. Medvedev

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Autor responsável pela correspondência
Email: anik@kinetics.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

Bibliografia

  1. Egorov G.I., Makarov D.M. // J. Chem. Thermodyn. 2011. V. 43. № 3. P. 430. https://doi.org/10.1016/j.jct.2010.10.018
  2. Nakanishi K. // Bull. Chem. Soc. Jpn. 1960. V. 33. № 6. P. 793. https://doi.org/10.1246/bcsj.33.793
  3. Subramanian D., Klauda J.B., Leys J., Anisimov M.A. // Вестн. СПбГУ. Физика и химия. 2013. Т. 4. № 4. С. 139. https://doi.org/10.48550/arXiv.1308.3676
  4. Wilcox D.S., Rankin B.M., Ben-Amotz D. // Faraday Discuss. 2013. V. 167. P. 177. https://doi.org/10.1039/C3FD00086A
  5. Nishikawa K., Iijima T. // J. Phys. Chem. 1990. V. 94. № 16. P. 6227. https://doi.org/10.1021/j100379a015
  6. Mizuno K., Kimura Y., Morichika H. et al. // J. Mol. Liq. 2000. V. 85. № 1–2. P. 139. https://doi.org/10.1016/S0167-7322(99)00170-1
  7. Kustov A.V., Antonova O.A. // Thermochim. Acta. 2013. V. 565. P. 159. https://doi.org/10.1016/j.tca.2013.05.028
  8. Onori G., Santucci A. // J. Mol. Liq. 1996. V. 69. P. 161. https://doi.org/10.1016/S0167-7322(96)90012-4
  9. Price W.S., Ide H., Arata Y. // J. Phys. Chem. A. 2003. V. 107. № 24. P. 4784. https://doi.org/10.1021/jp027257z
  10. Кесслер Ю.М., Зайцев А.Л. Сольвофобные эффекты. Теория, эксперимент, практика. Л.: Химия, 1989. 312 с.
  11. Freda M., Onori G., Santucci A. // Phys. Chem. Chem. Phys. 2002. V. 4. № 20. P. 4979. https://doi.org/10.1039/B203773D
  12. Kusalik P.G., Lyubartsev A.P., Bergman D.L., Laaksonen A. // J. Phys. Chem. B. 2000. V. 104. № 40. P. 9533–9539. https://doi.org/10.1021/jp001887o
  13. Gupta R., Patey G.N. // J. Chem. Phys. 2012. V. 137. № 3. P. 034509. https://doi.org/10.1063/1.4731248
  14. Banerjee S., Furtado J., Bagchi B. // Ibid. 2014. V. 140. № 19. P. 194502. https://doi.org/10.1063/1.4874637
  15. Anikeenko A.V., Kadtsyn E.D., Medvedev N.N. // J. Mol. Liq. 2017. V. 245. P. 35. https://doi.org/10.1016/j.molliq.2017.06.001
  16. Kadtsyn E.D., Anikeenko A.V., Medvedev N.N. // Ibid.2019. V. 286. P. 110870. https://doi.org/10.1016/j.molliq.2019.04.147
  17. Overduin S.D., Perera A., Patey G.N. // J. Chem. Phys. 2019. V. 150. № 18. P. 184504. https://doi.org/10.1063/1.5097011
  18. Cerar J., Jamnik A., Pethes I. et al // J. Colloid Interface Sci. 2020. V. 560. P. 730. https://doi.org/10.1016/j.jcis.2019.10.094
  19. Кадцын Е.Д., Ничипоренко В.А., Медведев Н.Н. // Журн. cтруктур. химии. 2021. Т. 62. № 1. С. 61. https://doi.org/10.26902/JSC_id66707
  20. Kadtsyn E.D., Nichiporenko V.A., Medvedev N.N. // J. Mol. Liq. 2022. V. 349. P. 118173. https://doi.org/10.1016/j.molliq.2021.118173
  21. Kalhor P., Li Q.-Z., Zheng Y.-Z., Yu Z.-W. // J. Phys. Chem. A. 2020. V. 124. № 30. P. 6177. https://doi.org/10.1021/acs.jpca.0c03463
  22. Staveley L.A. K., Spice B. // J. Chem. Soc. 1952. P. 406. https://doi.org/10.1039/jr9520000406
  23. Rama Varma K.T., Kumaran M.K., Seetharaman T.S. // J. Chem. Thermodyn. 1976. V. 8. № 7. P. 657. https://doi.org/10.1016/0021-9614(76)90017-3
  24. Paraskevopoulos G.C., Missen R.W. // Trans. Faraday Soc. 1962. V. 58. P. 869. https://doi.org/10.1039/TF9625800869
  25. Battino R. // Chem. Rev. 1971. V. 71. № 1. P. 5. https://doi.org/10.1021/cr60269a002
  26. Vasiltsova T., Heintz A., Nadolny H., Weingärtner H. // Phys. Chem. Chem. Phys. 2009. V. 11. № 14. P. 2408. https://doi.org/10.1039/B818532H
  27. Tironi I.G., Fontana P., van Gunsteren W.F. // Mol. Simul. 1996. V. 18. № 1–2. P. 1. https://doi.org/10.1080/08927029608022351
  28. Vrabec J., Stoll J., Hasse H. // J. Phys. Chem. B. 2001. V. 105. № 48. P. 12126. https://doi.org/10.1021/jp012542o
  29. Li A. H.-T., Huang S.-C., Chao S.D. // J. Chem. Phys. 2010. V. 132. № 2. P. 024506. https://doi.org/10.1063/1.3293129
  30. Kunz A.-P.E., Eichenberger A.P., van Gunsteren W.F. // Mol. Phys. 2011. V. 109. № 3. P. 365–372. https://doi.org/10.1080/00268976.2010.533208
  31. Guevara-Carrion G., Janzen T., Muñoz-Muñoz Y.M., Vrabec J. // J. Chem. Phys. 2016. V. 144. № 12. P. 124501. https://doi.org/10.1063/1.4943395
  32. Lindahl A., Hess B., van der Spoel D. GROMACS 2021.5 Source code (2021.5). Zenodo. 2022. https://doi.org/10.5281/zenodo.5850051
  33. Páll S., Zhmurov A., Bauer P. et al. // J. Chem. Phys. 2020. V. 153. № 13. P. 134110. https://doi.org/10.1063/5.0018516
  34. Bussi G., Donadio D., Parrinello M. // Ibid. 2007. V. 126. P. 014101. https://doi.org/10.1063/1.2408420
  35. Bernetti M., Bussi G. // Ibid.2020. V. 153. № 11. P. 114107. https://doi.org/10.1063/5.0020514
  36. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. // J. Comp. Chem. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  37. Essmann U., Perera L., Berkowitz M.L. et al. // J. Chem. Phys. 1995. V. 103. № 19. P. 8577. https://doi.org/10.1063/1.470117
  38. Jorgensen W.L., Maxwell D.S., Tirado-Rives J.J. // Am. Chem. Soc. 1996. V. 118. P. 11225. https://doi.org/10.1021/ja9621760
  39. Caleman C., van Maaren P.J., Hong M. et al. // J. Chem. Theory Comput. 2012. V. 8. № 1. P. 61. https://doi.org/10.1021/ct200731v
  40. Sega M., Fábián B., Horvai G., Jedlovszky P. // J. Phys. Chem. C. 2016. V. 120. № 48. P. 27468. https://doi.org/10.1021/acs.jpcc.6b09880
  41. Duffy E.M., Severance D.L., Jorgensen W.L. // J. Am. Chem. Soc. 1992. V. 114. № 19. P. 7535. https://doi.org/10.1021/ja00045a029

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (51KB)
3.

Baixar (47KB)
4.

Baixar (48KB)
5.

Baixar (57KB)
6.

Baixar (87KB)
7.

Baixar (81KB)

Declaração de direitos autorais © А.В. Аникеенко, Н.Н. Медведев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies