Potassium–Sodium Ceramics Modified with Metal Oxide Additives: Synthesis, Microstructure, and Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Single phase ceramic samples of new compounds (1 − x)(K0.5Na0.5)NbO3−xLa(Ag0.5Sb0.5)O3 (x = 0–0.15), modified by metal oxide additives ZnO, CuO, and MnO2, are prepared via a solid state reaction. The crystal structure, microstructure, and dielectric and ferroelectric properties of the samples are studied. It is established that a phase with a perovskite structure and an orthorhombic unit cell formed in each sample. Ferroelectric phase transitions are confirmed via dielectric spectroscopy. Generation of the second harmonic is observed, along with a drop in the temperature of transitions from the ferroelectric orthorhombic phase to the ferroelectric tetragonal phase, and then to the cubic paraelectric phase.

Sobre autores

G. Kaleva

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

E. Politova

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

A. Mosunov

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

S. Stefanovich

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

N. Sadovskaya

Institute of Crystallography, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kaleva@nifhi.ru
119333, Moscow, Russia

Bibliografia

  1. Gupta V., Sharma M., and Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227.
  2. Sodano H.A., Henry A., Inman D.J., and Park G. // Ibid. 2005. V. 16. P. 799.
  3. Sodano H.A., Park G., and Inman D.J. Estimation of electric charge output for piezoelectric energy harvesting // Strain. 2004. V. 40. P. 49.
  4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. Москва: Химия, 1985, 256 с.
  5. Eitel R.E., Randall C.A., Shrout T.R., and Park S.-E. // Jpn. J. Appl. Phys. 2002. V. 41. Part 1. P. 2099.
  6. Eitel R.E., Zhang S.J., Shrout T.R. et al. // J. Appl. Phys. 2004. V. 96. P. 2828.
  7. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Letters. 2005. V. 86. P. 262904.
  8. Iniguez J., Vandebilt D., and Bellaiche L. // Phys. Rev. B. 2003. V. 67. P. 224I07–1.
  9. Maeder M.D., Damjanovic D., and Setter N. // J. Electroceram. 2004. V. 13. P. 385.
  10. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84.
  11. Takenaka T., Nagata H., Hiruma Y. et al. // J. Electroceram. 2007. V. 19. P. 259.
  12. Takenaka T., Nagata H., and Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787.
  13. Rödel J., Jo W., Seifert T.P., Anton E.-M. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153.
  14. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049.
  15. Zhen Y.H. and Li J.F. // J. Am. Ceram. Soc. 2006. V. 89. P. 3669.
  16. Bernard J., Bencan A., Rojac T. et al. // Ibid. 2008. V. 91. P. 2409.
  17. Guo Y., Kakimoto K.-I., and Ohsato H. // Appl. Phys. Lett. 2004. V. 85. P. 4121.
  18. Ming B.Q., Wang J.F., Qi P., and Zang G.Z. // J. Appl. Phys. 2007. V. 101. P. 054103.
  19. Wang K. and Li J.F. // Adv. Funct. Mater. 2010. V. 20. P. 1924.
  20. Singh K.C., Jiten C., Laishram R. et al. // J. Alloy. Compd. 2010. V. 496. P. 717.
  21. Zhao P., Zhang B. P., and Li J.F. // J. Am. Ceram. Soc. 2008. V. 91. P. 1690.
  22. Jiang X.P., Yang Q., Yu Z.D. et al. // J. Alloy Compd. 2010 V. 493. P. 276.
  23. Lin D., Kwok K.W., and Chan H.L.W. // J. Appl. Phys. 2009. V. 106. P. 034102.
  24. Yoon M.S., Khansur N.H., Lee W.J. et al. // J. Advanced Materials Research. 2011. V. 287–290. P. 801.
  25. Sun X., Chen J., Yu R. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 130.
  26. Sun X., Deng J., Sun C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 8. P. 1853.
  27. Hao J., Xu Z., Chua R. et al. // Materials Chemistry and Physics. 2009. V. 118. Issue 1. P. 229.
  28. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. of Advanced Dielectrics. 2018. V. 8. № 1. P. 1850004.
  29. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45.
  30. Kim J.-W., Ryu J., Hahn B.-D. et al. // J. of the Korean Physical Society. 2013. V. 63. № 12. P. 2296.
  31. Политова Е.Д., Калева Г.М., Мосунов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156.
  32. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Diffusion Foundations. 2020. V. 27. P. 90.
  33. Kumar R., Kumar A., Singh S. // Sustainable Energy Fuels. 2018. V. 2. P. 2698.
  34. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56.
  35. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Там же. 2018. Т. 37. № 1. С. 76.
  36. Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012. 291 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (146KB)
3.

Baixar (1MB)
4.

Baixar (142KB)

Declaração de direitos autorais © Г.М. Калева, Е.Д. Политова, А.В. Мосунов, С.Ю. Стефанович, Н.В. Садовская, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies