Crystallization of Magnetic Iron Oxide Nanoparticles during Chemical Synthesis from Iron Salt Solutions with Exposure to Ultrasound

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iron oxide nanopowders are synthesized via chemical precipitation. It is shown that synthesis produces an iron oxide phase with a magnetite structure (either a magnetite–maghemite solid solution or a mixture of this solid solution and goethite). The sizes of the CSR and particles for the main phase are ~10–20 nm. The synthesized iron oxide powders have developed surfaces, specific surface area SBET ≈ 92 and 117 m2/g, and identical fairly large specific pore volumes (VP/P0→0.99/0→0.99 = 0.35 cm3/g). It is shown that additional in situ ultrasonic treatment of the magnetic iron oxide nanoparticles in the mother liquor results in abrupt oxidation of iron(II) ions and creates a nonmagnetic impurity phase of goethite.

About the authors

A. M. Nikolaev

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; St. Petersburg State University

Email: floijan@gmail.com
199155, St. Petersburg, Russia; 199034, St. Petersburg, Russia

A. S. Kovalenko

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: floijan@gmail.com
199155, St. Petersburg, Russia

K. V. Frolov

Shubnikov Institute of Crystallography, Russian Academy of Sciences

Email: floijan@gmail.com
119333, Moscow, Russia

G. P. Kopitsa

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; National Research Center Kurchatov Institute

Email: floijan@gmail.com
119333, Moscow, Russia; 188300, Gatchina, Leningrad oblast, Russia

A. E. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry

Email: floijan@gmail.com
119991, Moscow, Russia

O. A. Shilova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; St. Petersburg State Electrotechnical University

Author for correspondence.
Email: floijan@gmail.com
199155, St. Petersburg, Russia; 197022, St. Petersburg, Russia

References

  1. Kaiyi Jiang, Linlin Zhang, Gang Bao // Current Opinion in Biomedical Engineering. December 2021.
  2. Yang Ruan, Lingjun Kong, Yiwen Zhong et al. // J. of Cleaner Production, Available online 7 September 2021.
  3. Faruk Yakasai, Mohd Zaidi Jaafar, Sulalit Bandyopadhyay, Zhong et al. // J. of Petroleum Science and Engineering, Elsevier, Available online 2 September 2021
  4. Saragi T., Santika A.S., Permana B. et al. // Conference Series: Materials Science and Engineering, (2017). 196, 012025. https://doi.org/10.1088/1757-899x/196/1/012025
  5. Hasany S.F., Abdurahman N.H., Sunarti A.R., Jose R. // Current Nanoscience. 2013. V. 9. Iss. 5. P. 561. https://doi.org/10.2174/15734137113099990085
  6. Ansari S.A.M.K., Ficiarà E., Ruffinatti F.A. et al. // Materials. 2019. V. 12. № 3. P. 465. https://doi.org/10.3390/ma12030465
  7. Schwaminger S.P., Syhr C., Berensmeier S. // Crystals. 2020. V. 10. P. 214. https://doi.org/10.3390/cryst10030214
  8. Rashid H., Mansoor M.A., Haider B. et al. // Separation Science and Technology. 2019. V. 55. No 6. P. 1207. https://doi.org/10.1080/01496395.2019.1585876
  9. Laurent S., Forge D., Port M. et al. // Chemical Reviews. 2008. V. 108. № 6. P. 2064.
  10. Шилова О.А., Николаев А.М., Коваленко А.С. и др. // Журн. неорг. химии. 2020. Т. 65. № 3. С. 398.
  11. Hayato Koizumi Md. Azhar Uddin Yoshiei Kato // Inorganic Chemistry Communications. 2021. V. 124. 1084. https://doi.org/10.1016/j.inoche.2020.10840000
  12. Eskandari M.J., Hasanzadeh I. // Materials Science and Engineering: B. 2021. V. 266. P. 115050.
  13. Chuev M.A. // JMMM. 2019. 470. P. 12.https://doi.org/10.1016/j.jmmm.2017.11.091
  14. Nasrazadani S., Raman A. // Corrosion Science. 1993. V. 34. № 8. P. 1355.
  15. Anthony J.W., Bideaux R.A., Bladh K.W. Magnetite. Handbook of Mineralogy. Chantilly, VA: Mineralogical Society of America, 2018. 333 p.
  16. Pecharroman C., Gonzalez-Carreno T., Iglesias J.E. // Phys. Chem. Miner. 1995. V. 22. P. 21.
  17. Radek Zboril, Miroslav Mashlan, Dimitris Petridis // Chem. Mater. 2002. V. 14. № 3. P. 969.
  18. Jeppe Fock, Lara K Bogart, David González-Alonso, et al. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 265005.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (107KB)
3.

Download (53KB)
4.

Download (1MB)
5.

Download (600KB)
6.

Download (96KB)

Copyright (c) 2023 А.М. Николаев, А.С. Коваленко, К.В. Фролов, Г.П. Копица, А.Е. Баранчиков, О.А. Шилова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies