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Abstract. When predicting retention indices using deep learning, there is usually no way to assess the 
reliability of the prediction for a particular molecule. In this work, using stationary phases based on 
polyethylene glycol and the NIST 17 database as an example, it is shown that, on average, the closer the 
molecule in the training data set is to the compound being predicted, the more accurate the prediction. 
Tanimoto similarity of “molecular fingerprints” ECFP is the most appropriate molecular similarity 
calculation algorithm for this problem among the four considered. It is shown that for a number of 
transformation products of unsymmetrical dimethylhydrazine, whose structure was established using this 
prediction, it could be very unreliable.
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INTRODUCTION

The retention time in gas chromatography depends 
on the f low rate of the carrier gas, the geometric 
parameters of the chromatographic column, the 
temperature program and other factors. At the same 
time, the retention index [1] characterizing the 
retention time of the substance relative to the retention 
times of n-alkanes depends mainly on the structure of 
the retained compound and the chemical nature of the 
stationary phase [1–3]. Thus, the task of predicting the 
retention index for the given molecule and the given 
stationary phase is the task of predicting one single 
number by the structure of the molecule.

In chromatography-mass spectrometric analysis of a 
complex mixture containing unknown components, the 
assumption of the structure of an unknown compound 
is made on the basis of the mass spectrum, most often 
by library search [4, 5]. However, library search often 
yields an incorrect result, even if the compound in 
question is contained in the database [6]. When there 
are no compounds to be identified in the databases, the 
task becomes even more complicated [7]. However, 
the comparison of the observed retention index with 
that predicted by machine learning allows to discard 
incorrect candidates [6, 8, 9] and confirm preliminary 

identification [9–12]. The use of retention indices 
significantly increases the identification reliability [6, 9].  
Experimental data on retention indices are only 
available for about one hundred thousand molecules 
[13], which is several times less than the number of 
molecules for which experimental mass spectra are 
available and several orders of magnitude less than the 
total number of known molecules. Thus, prediction 
of retention indices is an important task for modern 
chemistry.

Deep learning, i.e., a totality of statistical methods 
based on deep neural networks, has revolutionized 
many areas of science and technology in recent years. 
Deep neural networks are used for a variety of tasks 
from analytical chemistry [14] to machine vision 
and machine translation tasks [15]. In particular, 
deep learning is used to predict gas chromatographic 
retention indices [13, 16–20] by the molecule 
structure. In recent years, a number of models of 
this type have been developed [18]. Deep learning 
is significantly superior in accuracy to previously 
used models [16, 17]. In a number of works [9–12], 
such predicted retention indices are used to clarify 
identification.

Estimation of accuracy of models that predict 
retention indices is carried out using large data sets 
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and “average” accuracy metric is calculated for the 
entire data set [16–20] (for instance, standard or 
average absolute deviation). However, this makes it 
completely impossible to assess whether the prediction 
for a particular individual molecule is accurate. In some 
works, accuracy is calculated for individual classes of 
compounds [18, 19]; however, in this case, the classes 
(for instance, “aromatic compounds”, “trimethylsilyl 
derivatives”) are also quite wide and include a variety 
of molecules. In this regard, it is relevant to develop 
methods that can help assess whether the prediction 
of the retention index for a given molecule is reliable, 
i.e., methods to assess whether the prediction is 
trustworthy. The use of predicted retention indices 
can lead to incorrect results if it is for the molecules in 
question that prediction is highly unreliable. Recently, 
an approach has been developed for this task that 
compares predictions made using several independent 
models [21].

There are various methods to quantify how close 
the structures of the two molecules are, i.e., to 
estimate molecular similarity [22–25]. In particular, 
the similarity of so-called “molecular fingerprints” 
[25] (binary vectors, each bit of which shows whether 
a fragment is contained in the molecule) can be used, 
as well as finding a common subgraph between two 
molecules [22].

The purpose of this work is to study how molecular 
similarity between the molecule for which the 
retention index prediction is performed by deep 
learning and the molecules contained in the training 
dataset used to train the model affects the accuracy of 
the retention index prediction. This study is performed 
on the example of retention indices for polar  
stationary phases (Standard Polar type in the NIST 
database; polyethylene glycol and approximately 
chromatographically equivalent polymers based on it)  
and a previously published deep learning model 
embedded in the SVEKLA software [9, 16]. In 
addition, the purpose of this work is a preliminary 
assessment of whether the predictions of retention 
indices made in [9] and used to construct the structure 
of new transformation products of unsymmetric 
dimethylhydrazine are reliable.

METHODS

Dataset and Deep Learning Model

NIST 17 was used as the dataset. The data 
processing and preparation procedure is described in 
the previous work [16]. The dataset was divided into 
five sets randomly. Model training was performed five 
times, each time four sets were used as training ones 
and the fifth set was used as a test one. The prediction 

results for the test sets (each time, the training set  
lacks the compound for which prediction is performed) 
were combined and used for further work (5-fold  
cross-validation).

Two models were trained, viz. a one-dimensional 
convolutional neural network and a deep multilayer 
perceptron. Detailed descriptions of models are given 
in [13, 16]. Transfer training was used, viz. first, neural 
networks were trained to predict retention indices for 
non-polar stationary phases, and then the obtained 
weights of neural networks were used as initial values 
to train the model to predict retention indices for polar 
stationary phases. The molecules included in the test 
set were each time removed from the retention index 
dataset for the polar stationary phases used for training. 
Thus, there was no “data leakage”, i.e., the molecules 
used for testing were not used in training at any stage. 
The training procedure is described in detail in the  
previous work [16].

The NIST 17 database contains several data 
records for each of the molecules. All these records 
were used in training and testing (they differ in 
which chromatographic column was used, as well 
as in measurement conditions). After the cross-
validation procedure is performed, there is a pair 
of values for each record, viz. the experimental 
retention index and that predicted using a model 
that “did not see” this molecule during training. 
The initial database was divided into five sets so that 
all records for each of the molecules were placed in 
one of the sets selected randomly. Geometric isomers 
and stereoisomers were considered as one molecule. 
A more detailed description of procedures and 
algorithms is contained in previously published works  
[13, 16–17].

Calculating Molecular Similarity

The original dataset contained 89,086 records, 
each containing a molecule structure, a reference, and 
a predicted retention index. For each structure, the 
median value of the reference retention index was found. 
Thus, a data set containing 9,408 records consisting of 
molecule structure, reference and predicted value was 
obtained. Each molecule occurs exactly once in the 
given set.

For each molecule, “molecular f ingerprints” 
(vectors showing the presence of certain fragments) were 
calculated using the ECFP algorithm [25] (radius 3, 
vector length 1024). For each pair of molecules, the 
Tanimoto similarity of “molecular fingerprints” is 
calculated

		  S
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where NA and NB are the numbers of non-zero bits in 
the “molecular fingerprints” of each molecule, and 
NAB is the number of bits that are non-zero in each 
of the two molecular fingerprints at the same time. 
For each molecule, 100 closest structures (having the 
highest value of molecular similarity S) included in the 
training dataset were selected when training the model 
used to predict the retention index for the molecule in 
question. Then, four methods for calculating molecular 
similarity were considered. For each of the methods, a 
molecular similarity value is obtained for the molecule 
included in the training dataset when training the model 
used to predict the retention index for the molecule in 
question and having the highest molecular similarity 
value with the molecule in question. This value is 
denoted as Smax. Since these methods are more resource 
intensive, the search for the molecule with the highest 
molecular similarity value was performed for only  
100 pre-selected candidates.

The first molecular similarity calculation method 
designated by MCS was to calculate the largest common 
fragment using the RDKit library, rdFMCS.FindMCS 
method. After this fragment was found, similarity was 
calculated using a formula similar to Eq. (1)
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where MA and MB are the numbers of atoms of each 
molecule, and MAB is the number of atoms in the largest 
common fragment. Note that only the type of atoms 
and the structure of the molecular graph are taken into 
account. Hydrogen atoms are not considered.

The second method was the Rascal similarity 
calculation. This also calculates the largest common 
fragment by the Rascal algorithm [22] and the number 
of bonds and atoms in this fragment. The similarity is 
calculated by the following equation
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where MA and MB are the numbers of atoms of each 
molecule, BA and BB are the numbers of bonds in each 
molecule, MAB and BAB are the numbers of atoms and 
bonds in the largest common fragment, respectively. 
This method used the rdRascalMCES module of the 
RDKit library.

The third and fourth methods were designated by 
RDKitFP and ECFP. They calculated the similarity 
of “molecular fingerprints” by formula (1). Molecular 
descriptors calculated using the GetRDKitFPGenerator 
and GetMorganGenerator classes, respectively, were 

used. The length of the vector was considered to be 
4096, and the radius (for ECFP) was taken to be 6. 
The ECFP method corresponds to “circular molecular 
fingerprints” [25]. The maxPath parameter for RDKitFP 
was also set to 6.

DISCUSSION OF RESULTS

Molecular Similarity and Accuracy  
of Prediction of Retention Indices

During cross validation, the original dataset (the 
NIST 17 database) was divided into five subsets. 
Each molecule from the NIST 17 database, for which 
the experimental value of the polar stationary phase 
retention index is available, had the molecule closest to 
it found (in four ways), i.e., the one having the highest 
value of the molecular similarity measure and included 
in another subset of the dataset. The hypothesis tested in 
this work is that the molecular similarity Smax between 
the molecule for which prediction is performed and its 
closest molecule from the training set is related to the 
prediction accuracy.

Figure 1 shows the distribution of molecules (the 
number of molecules in the respective range (bin) is 
designated by N) from the dataset involved by the value 
Smax for four molecular similarity calculation methods. 
Light grey shows molecules, for which the absolute 
prediction error using the algorithm [16] in question 
is not more than 100, and dark grey shows those for 
which the absolute prediction error is greater than 
100. In what follows, we call such molecules “poorly 
predicted”. The value 100 was used as a threshold 
since such a value was used in previous work [9] to 
discard false candidates in the analysis of the complex 
mixture. Thus, if the candidate structure in question 
is “poorly predicted”, it may be falsely discarded (or 
vice versa not discarded) based on a comparison of the 
observed and predicted retention indices for the polar 
stationary phase.

As we can see from Fig. 1, when using the ECFP 
molecular similarity calculation method, the value 
Smax of the largest number of molecules is about 
0.5. The median value Smax for all molecules is 0.53 
in this case. For molecules with the values Smax less  
than ~0.5, the proportion of “poorly predicted” 
molecules is signif icantly higher than for others. 
For the RDKitFP molecular similarity calculation 
method, the median value Smax for all molecules is 
significantly higher and equals 0.89. Although most 
molecules have quite high values Smax, in this case 
there is a similar trend as well — the number of “poorly 
predicted” molecules decreases significantly slower 
as Smax decreases as compared to the total number 
of molecules. For the MCS and Rascal molecular 
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similarity calculation methods based on comparison of 
molecular graphs rather than “molecular fingerprints”, 
the trend is less pronounced. For all molecular 
similarity calculation methods in the region of the 
smallest values Smax, most molecules are classified as 
“poorly predicted”.

We can see that for all methods but for RDKitFP, 
the distribution of molecules by Smax has a pronounced 
bimodal character. For all methods, there are a 
significant number of molecules that have a very similar 
molecule in the training set, such as a homologue. 
In  the case of the MCS algorithm, the molecular 
similarity between, for instance, cyclohexene and 
cyclohexane is 1.0: one double bond in the cycle is 
ignored since a common subgraph including all bonds 
between carbon atoms except this one includes all 
non-hydrogen atoms. This and other features of the 
algorithm result in a number of very different chemical 
molecules having a molecular similarity of 1.0. For 
the Rascal algorithm, a very high molecular similarity 
value is also possible for highly different molecules. 
For instance, 1-eicosanol and eicosanoic acid have 
the molecular similarity value 0.95 while this value 
is 0.52 when the RDKitFP method is used and 0.39 
when ECFP is used. At the same time, ECFP gives 
a similarity of 1.0 for homologues containing a long 
sequence of carbon atoms, for instance for eicosanol 
and docosanol.

Figure 2 clearly shows how the proportion of 
“poorly predicted” (the average absolute error is greater 
than 100) molecules depends on Smax. For all methods 
but for MCS, this proportion grows rapidly with the 
decreasing Smax. Thus, small values Smax indicate that it 
is likely that the prediction for the molecule in question 
is very inaccurate. For all methods but for ECFP, the 
total number of molecules (also shown in Fig. 2 for 
convenience) in the respective range drops rapidly 
with a drop in the value Smax. In general, Figs. 1 and 

2 show that ECFP is the best algorithm for calculating 
molecular similarity for this task.

In Figs. 1 and 2 and in the following sections, the 
proportion of “poorly predicted” compounds, i.e., 
compounds for which the absolute prediction error is 
greater than 100, is mainly discussed. Nevertheless, 
it is interesting to consider the error distribution 
for different ranges of Smax. Such absolute error 
distributions are shown in Fig. 3 for the ECFP and 
RDKitFP algorithms. In the case of ECFP, we can see 
that if Smax > 0.9, the vast majority of absolute error 
values ​do not exceed 50 while for absolute error values ​
greater than 100, molecules with Smax < 0.5 begin to 
dominate. There are similar patterns for the RDKitFP 
algorithm.

Quantitative Comparison  
of Molecular Similarity Calculation Methods

If some molecular similarity value is used as a 
threshold, molecular similarity can be used as the 
simplest predictor of whether a given molecule is 
“poorly predicted”. If the threshold value changes 
from 0 to 1, the prediction sensitivity (the proportion 
of identified “poorly predicted” molecules among all 
“poorly predicted” molecules) will increase and the 
specificity will decrease. Thus, it is possible to construct 
a receiver operator characteristic (ROC) curve [26, 27]  
characterizing the reliability of a given molecular 
similarity metric when used as a predictor. The area 
under this curve is [27] a metric of the accuracy of such 
a predictor.

Table 1 shows the area under the curve for various 
molecular similarity algorithms. At the same time, unlike 
Figs. 1 and 2, the RDKitFP and ECFP algorithms with 
different values ​of the maxPath and radius parameters 
were considered in this case. Table 1 gives the area 
under the curve for different values of these parameters. 

Fig. 1. Distribution of the number of molecules N in the NIST 17 retention index database (polar stationary phases) according 
to the values Smax (maximum molecular similarity value for all pairs including the molecule in question and the molecules 
from the training set) for the four molecular similarity calculation methods. Dark grey indicates “poorly predicted molecules” 
(the absolute prediction error is greater than 100), and light grey indicates the remaining molecules.
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The maxPath (RDKitFP “molecular fingerprints”) and 
radius (ECFP “molecular fingerprints”) parameters 
characterize the size of the substructures to which the 
“molecular fingerprint” bits correspond. The higher the 
values of these parameters, the larger substructures are 
considered.

Table 1 shows that the ECFP algorithm is best 
suited for this purpose, and there is practically no 
dependence on the radius parameter. The RDKitFP 
algorithm (when maxPath is 6 and higher) yields worse 
results. Other algorithms produce unreliable results. 
Note that the value of the area under the curve 0.5 
corresponds to a random classifier, and the value 1 
corresponds to the ideal classifier [26]. A value of 0.7 is 
sometimes considered the lowest acceptable [27]. ROC 

curves for molecular similarity calculation algorithms 
based on “molecular fingerprints” are given in Fig. 4. 
One can see that RDKitFP with maxPath = 3 fails 
to give any satisfactory accuracy, and ECFP exceeds 
RDKitFP.

Reliability of Identification of a Number 
of Nitrogen-Containing Compounds

Unsymmetrical dimethylhydrazine (UDMH) is a 
toxic compound used as a rocket fuel. When stored in 
an uncontrolled way and released into the environment, 
this compound forms a variety of transformation  
products [9, 12, 28], many of which are no less toxic than 
UDMH itself [12]. Studying UDMH transformation 

Fig. 2. Dependence of the total number of molecules N (solid circles and lines) and the fraction of "poorly predicted 
molecules" (the absolute prediction error is greater than 100) F (rectangles) on the value Smax (maximum molecular similarity 
value for all pairs including the molecule involved and molecules from the training set).

Fig. 3. Distribution of the number of molecules N over the absolute prediction error for different values Smax (the maximum 
molecular similarity value for all pairs that include the molecule involved and the molecules from the training set) for the two 
molecular similarity calculation methods.
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products is an important task. The structures of most 
transformation products are still unknown [9]. Various 
chromatography-mass spectrometry techniques are 
used to pre-determine the structures of the UDMH 
transformation products in complex mixtures. Recently, 
work [9] has been published that used prediction of 
retention indices in the polar stationary phase to confirm 
the structures of unknown UDMH transformation 
products. If the difference between the observed and 

predicted index exceeded 100, the candidate structure 
was discarded.

A total of 1,754 of 9,408 (19%) molecules in the 
dataset are “poorly predicted”. However, among 
molecules with Smax < 0.5 (the ECFP algorithm), 31% 
are “poorly predicted”. Table 2 shows the number of 
“poorly predicted” molecules for different ranges of 
Smax and the mean and median absolute error values 
for these ranges. The error values in Table 2 differ 
from those in the previous work [16], where exactly 
the same model was used, due to the fact that errors 
in [16] were calculated for all records of the NIST 
database, and the data in this work was previously 
averaged over all records for each compound. Thus, 
the contribution of those compounds that have many 
records in the NIST database to the average absolute 
error has been significantly reduced since if there are 
many records for the compound, the error modulus 
is calculated for each record and all these values (for 
each of the records for all compounds) are averaged. 
The average absolute error is the quotient of the 
sum of error modules and the number of records or 
molecules. In this work, each compound corresponds 
to one sum of error modules, as opposed to [16]. We 
noted that most compounds, for each of which the 
NIST database contains multiple records, have a 
relatively simple structure and, on average, predictions 
for such compounds are more accurate than for all 
compounds. In the NIST database, most structures 
have exactly one record, but for some structures (for 
instance, molecules such as benzene and ethanol), 
the database contains many records. The difference 
in the approach to calculating the average absolute 
error leads to the difference in the values given in [16]  
and in Table 2.

Figure 5 shows the structures proposed in [9] as 
structures of the UDMH transformation products using 
the prediction of the polar stationary phase retention 
indices. For each of the structures, molecular similarity 
(the ECFP algorithm) with the closest structure 
from the NIST database is shown. Two structures are 
contained in the NIST database — this value is 1.0 for 
them. For other structures, this value does not exceed 
0.5. For a number of structures, this value is even less 
than 0.2. Thus, one cannot be sure that such predictions 
lead to correct results, and the results presented should 
be treated with caution. Nevertheless, structures 
confirmed by several methods of chromatography-
mass spectrometry (gas and liquid) and several 
machine learning methods can be considered as  
sufficiently reliable [9, 12].

Fig. 4. ROC curves (specificity-sensitivity curves) for 
predicting whether a molecule is “poorly predicted” 
(the absolute prediction error is greater than 100) using 
different molecular similarity calculation algorithms. 
Curves for algorithms, for which the area under the curve 
differs by no more than 0.02, are labeled with a single line 
type for readability.

Table 1. Area under the ROC curve when using different 
molecular similarity metrics as a predictor of whether a 
molecule is “poorly predicted” or not 

Method Area under the curve

RDKitFP (maxPath = 3) 0.62

RDKitFP (maxPath = 6) 0.69

RDKitFP (maxPath = 12) 0.70

RDKitFP (maxPath = 15) 0.69

ECFP (radius = 3) 0.72

ECFP (radius = 6) 0.72

ECFP (radius = 12) 0.72

MCS 0.55

Rascal 0.61
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Table 2. Number of “poorly predicted” molecules and accuracy metrics for different ranges of Smax (the ECFP algorithm)

Range “Poorly predicted” 
molecules Molecules in total

Proportion  
of “poorly predicted”  

molecules, %

Mean  
absolute error

Median  
absolute error

All molecules 1754 9408 18.6 70.6 28.4

Smax > 0.7 83 1419 5.8 25.8 8.3

Smax > 0.5 512 5239 9.8 41.7 15.9

Smax < 0.5 1168 3820 30.6 109.9 57.0

Smax < 0.3 280 583 48.0 173.6 95.4

Smax < 0.2 50 30 60 311.0 181.7

Fig. 5. Structures of the transformation products of unsymmetrical dimethylhydrazine proposed in [9] and the values Smax 
(the value of molecular similarity between the molecule involved and its closest molecule from the training set) for each of 
them. The molecular similarity calculation method is ECFP.



140	 MATYUSHIN et al.

	 JOURNAL OF PHYSICAL CHEMISTRY Vol. 99 No. 1 2025

CONCLUSIONS

The accuracy of  models  predicting gas 
chromatographic retention indices is estimated using 
metrics such as the mean absolute error, which, 
however, do not allow estimating the accuracy for 
particular molecules. In this work, we showed that the 
fact that there are molecules in the training set that 
are close in structure to the molecule whose retention 
index is to be predicted greatly increases the probability 
that the prediction for this molecule will be accurate. 
The most suitable way to assess molecular similarity 
for this task is to use ECFP “molecular fingerprints”. 
When the prediction of retention indices is used to 
construct structures of unknown chemical compounds, 
one needs to estimate the accuracy of prediction in one 
way or another. Thus, for instance, in one of the works 
that study transformation products of unsymmetrical 
dimethylhydrazine [9], the training dataset lacked 
molecules with high values of molecular similarity 
measure for most of the considered structures. 
Therefore, the conclusions made by predicting retention 
indices for these structures may not be entirely reliable. 
The source code of the scripts used to perform this 
work is available online: https://github.com/mtshn/
molsimwax
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