JOURNAL OF PHYSICAL CHEMISTRY, 2025, Vol. 99, No. 1, c. 133—141

—— PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY ——

APPLYING MOLECULAR SIMILARITY
TO ASSESS THE PREDICTION ACCURACY
OF GAS CHROMATOGRAPHIC RETENTION INDICES
USING DEEP LEARNING

D. D. Matyushin?, A. Yu. Sholokhova® *, M. D. Khrisanfov®-%, and S. A. Borovikova“
?Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, 119071 Russia

bL.omonosov Moscow State University, Department of Chemistry, Moscow, 119991 Russia

*e-mail: shonastya@yandex.ru

Received March 25, 2024
Revised May 22, 2024
Accepted May 24, 2024

Abstract. When predicting retention indices using deep learning, there is usually no way to assess the
reliability of the prediction for a particular molecule. In this work, using stationary phases based on
polyethylene glycol and the NIST 17 database as an example, it is shown that, on average, the closer the
molecule in the training data set is to the compound being predicted, the more accurate the prediction.
Tanimoto similarity of “molecular fingerprints” ECFP is the most appropriate molecular similarity
calculation algorithm for this problem among the four considered. It is shown that for a number of
transformation products of unsymmetrical dimethylhydrazine, whose structure was established using this

prediction, it could be very unreliable.
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INTRODUCTION

The retention time in gas chromatography depends
on the flow rate of the carrier gas, the geometric
parameters of the chromatographic column, the
temperature program and other factors. At the same
time, the retention index [1] characterizing the
retention time of the substance relative to the retention
times of n-alkanes depends mainly on the structure of
the retained compound and the chemical nature of the
stationary phase [1—3]. Thus, the task of predicting the
retention index for the given molecule and the given
stationary phase is the task of predicting one single
number by the structure of the molecule.

In chromatography-mass spectrometric analysis of a
complex mixture containing unknown components, the
assumption of the structure of an unknown compound
is made on the basis of the mass spectrum, most often
by library search [4, 5]. However, library search often
yields an incorrect result, even if the compound in
question is contained in the database [6]. When there
are no compounds to be identified in the databases, the
task becomes even more complicated [7]. However,
the comparison of the observed retention index with
that predicted by machine learning allows to discard
incorrect candidates [6, 8, 9] and confirm preliminary

identification [9—12]. The use of retention indices
significantly increases the identification reliability [6, 9].
Experimental data on retention indices are only
available for about one hundred thousand molecules
[13], which is several times less than the number of
molecules for which experimental mass spectra are
available and several orders of magnitude less than the
total number of known molecules. Thus, prediction
of retention indices is an important task for modern
chemistry.

Deep learning, i.e., a totality of statistical methods
based on deep neural networks, has revolutionized
many areas of science and technology in recent years.
Deep neural networks are used for a variety of tasks
from analytical chemistry [14] to machine vision
and machine translation tasks [15]. In particular,
deep learning is used to predict gas chromatographic
retention indices [13, 16—20] by the molecule
structure. In recent years, a number of models of
this type have been developed [18]. Deep learning
is significantly superior in accuracy to previously
used models [16, 17]. In a number of works [9—12],
such predicted retention indices are used to clarify
identification.

Estimation of accuracy of models that predict
retention indices is carried out using large data sets
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and “average” accuracy metric is calculated for the
entire data set [16—20] (for instance, standard or
average absolute deviation). However, this makes it
completely impossible to assess whether the prediction
for a particular individual molecule is accurate. In some
works, accuracy is calculated for individual classes of
compounds [18, 19]; however, in this case, the classes
(for instance, “aromatic compounds”, “trimethylsilyl
derivatives™) are also quite wide and include a variety
of molecules. In this regard, it is relevant to develop
methods that can help assess whether the prediction
of the retention index for a given molecule is reliable,
i.e., methods to assess whether the prediction is
trustworthy. The use of predicted retention indices
can lead to incorrect results if it is for the molecules in
question that prediction is highly unreliable. Recently,
an approach has been developed for this task that
compares predictions made using several independent
models [21].

There are various methods to quantify how close
the structures of the two molecules are, i.e., to
estimate molecular similarity [22—25]. In particular,
the similarity of so-called “molecular fingerprints”
[25] (binary vectors, each bit of which shows whether
a fragment is contained in the molecule) can be used,
as well as finding a common subgraph between two
molecules [22].

The purpose of this work is to study how molecular
similarity between the molecule for which the
retention index prediction is performed by deep
learning and the molecules contained in the training
dataset used to train the model affects the accuracy of
the retention index prediction. This study is performed
on the example of retention indices for polar
stationary phases (Standard Polar type in the NIST
database; polyethylene glycol and approximately
chromatographically equivalent polymers based on it)
and a previously published deep learning model
embedded in the SVEKLA software [9, 16]. In
addition, the purpose of this work is a preliminary
assessment of whether the predictions of retention
indices made in [9] and used to construct the structure
of new transformation products of unsymmetric
dimethylhydrazine are reliable.

METHODS
Dataset and Deep Learning Model

NIST 17 was used as the dataset. The data
processing and preparation procedure is described in
the previous work [16]. The dataset was divided into
five sets randomly. Model training was performed five
times, each time four sets were used as training ones
and the fifth set was used as a test one. The prediction
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results for the test sets (each time, the training set
lacks the compound for which prediction is performed)
were combined and used for further work (5-fold
cross-validation).

Two models were trained, viz. a one-dimensional
convolutional neural network and a deep multilayer
perceptron. Detailed descriptions of models are given
in [13, 16]. Transfer training was used, viz. first, neural
networks were trained to predict retention indices for
non-polar stationary phases, and then the obtained
weights of neural networks were used as initial values
to train the model to predict retention indices for polar
stationary phases. The molecules included in the test
set were each time removed from the retention index
dataset for the polar stationary phases used for training.
Thus, there was no “data leakage”, i.e., the molecules
used for testing were not used in training at any stage.
The training procedure is described in detail in the
previous work [16].

The NIST 17 database contains several data
records for each of the molecules. All these records
were used in training and testing (they differ in
which chromatographic column was used, as well
as in measurement conditions). After the cross-
validation procedure is performed, there is a pair
of values for each record, viz. the experimental
retention index and that predicted using a model
that “did not see” this molecule during training.
The initial database was divided into five sets so that
all records for each of the molecules were placed in
one of the sets selected randomly. Geometric isomers
and stereoisomers were considered as one molecule.
A more detailed description of procedures and
algorithms is contained in previously published works
[13, 16—17].

Calculating Molecular Similarity

The original dataset contained 89,086 records,
each containing a molecule structure, a reference, and
a predicted retention index. For each structure, the
median value of the reference retention index was found.
Thus, a data set containing 9,408 records consisting of
molecule structure, reference and predicted value was
obtained. Each molecule occurs exactly once in the
given set.

For each molecule, “molecular fingerprints”
(vectors showing the presence of certain fragments) were
calculated using the ECFP algorithm [25] (radius 3,
vector length 1024). For each pair of molecules, the
Tanimoto similarity of “molecular fingerprints” is
calculated

N,+N
S = 4 B___ (1)
Ny+Np—Nyp
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where N, and Np are the numbers of non-zero bits in
the “molecular fingerprints” of each molecule, and
N 4p is the number of bits that are non-zero in each
of the two molecular fingerprints at the same time.
For each molecule, 100 closest structures (having the
highest value of molecular similarity .S) included in the
training dataset were selected when training the model
used to predict the retention index for the molecule in
question. Then, four methods for calculating molecular
similarity were considered. For each of the methods, a
molecular similarity value is obtained for the molecule
included in the training dataset when training the model
used to predict the retention index for the molecule in
question and having the highest molecular similarity
value with the molecule in question. This value is
denoted as S, Since these methods are more resource
intensive, the search for the molecule with the highest
molecular similarity value was performed for only
100 pre-selected candidates.

The first molecular similarity calculation method
designated by MCS was to calculate the largest common
fragment using the RDKit library, rdFMCS.FindMCS
method. After this fragment was found, similarity was
calculated using a formula similar to Eq. (1)

M, + Mg

SZMA""MB_MAB’

()

where M, and Mp are the numbers of atoms of each
molecule, and M is the number of atoms in the largest
common fragment. Note that only the type of atoms
and the structure of the molecular graph are taken into
account. Hydrogen atoms are not considered.

The second method was the Rascal similarity
calculation. This also calculates the largest common
fragment by the Rascal algorithm [22] and the number
of bonds and atoms in this fragment. The similarity is
calculated by the following equation

g (Mg + Byp)
(M4 +By)(Mg + Bg)

3)

where M, and Mp are the numbers of atoms of each
molecule, B, and By are the numbers of bonds in each
molecule, M,z and B,p are the numbers of atoms and
bonds in the largest common fragment, respectively.
This method used the rdRascalMCES module of the
RDKit library.

The third and fourth methods were designated by
RDKIitFP and ECFP. They calculated the similarity
of “molecular fingerprints” by formula (1). Molecular
descriptors calculated using the GetRDKitFPGenerator
and GetMorganGenerator classes, respectively, were
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used. The length of the vector was considered to be
4096, and the radius (for ECFP) was taken to be 6.
The ECFP method corresponds to “circular molecular
fingerprints” [25]. The maxPath parameter for RDKitFP
was also set to 6.

DISCUSSION OF RESULTS

Molecular Similarity and Accuracy
of Prediction of Retention Indices

During cross validation, the original dataset (the
NIST 17 database) was divided into five subsets.
Each molecule from the NIST 17 database, for which
the experimental value of the polar stationary phase
retention index is available, had the molecule closest to
it found (in four ways), i.e., the one having the highest
value of the molecular similarity measure and included
in another subset of the dataset. The hypothesis tested in
this work is that the molecular similarity S,,,, between
the molecule for which prediction is performed and its
closest molecule from the training set is related to the
prediction accuracy.

Figure 1 shows the distribution of molecules (the
number of molecules in the respective range (bin) is
designated by ) from the dataset involved by the value
Siax for four molecular similarity calculation methods.
Light grey shows molecules, for which the absolute
prediction error using the algorithm [16] in question
is not more than 100, and dark grey shows those for
which the absolute prediction error is greater than
100. In what follows, we call such molecules “poorly
predicted”. The value 100 was used as a threshold
since such a value was used in previous work [9] to
discard false candidates in the analysis of the complex
mixture. Thus, if the candidate structure in question
is “poorly predicted”, it may be falsely discarded (or
vice versa not discarded) based on a comparison of the
observed and predicted retention indices for the polar
stationary phase.

As we can see from Fig. 1, when using the ECFP
molecular similarity calculation method, the value
Smax Of the largest number of molecules is about
0.5. The median value S,,,, for all molecules is 0.53
in this case. For molecules with the values S, less
than ~0.5, the proportion of “poorly predicted”
molecules is significantly higher than for others.
For the RDKIitFP molecular similarity calculation
method, the median value S,,,, for all molecules is
significantly higher and equals 0.89. Although most
molecules have quite high values S,,,,, in this case
there is a similar trend as well — the number of “poorly
predicted” molecules decreases significantly slower
as Spax decreases as compared to the total number
of molecules. For the MCS and Rascal molecular
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Fig. 1. Distribution of the number of molecules N in the NIST 17 retention index database (polar stationary phases) according
to the values S,,,x (maximum molecular similarity value for all pairs including the molecule in question and the molecules
from the training set) for the four molecular similarity calculation methods. Dark grey indicates “poorly predicted molecules”
(the absolute prediction error is greater than 100), and light grey indicates the remaining molecules.

similarity calculation methods based on comparison of
molecular graphs rather than “molecular fingerprints”,
the trend is less pronounced. For all molecular
similarity calculation methods in the region of the
smallest values S,,,x, most molecules are classified as
“poorly predicted”.

We can see that for all methods but for RDKIitFP,
the distribution of molecules by S, has a pronounced
bimodal character. For all methods, there are a
significant number of molecules that have a very similar
molecule in the training set, such as a homologue.
In the case of the MCS algorithm, the molecular
similarity between, for instance, cyclohexene and
cyclohexane is 1.0: one double bond in the cycle is
ignored since a common subgraph including all bonds
between carbon atoms except this one includes all
non-hydrogen atoms. This and other features of the
algorithm result in a number of very different chemical
molecules having a molecular similarity of 1.0. For
the Rascal algorithm, a very high molecular similarity
value is also possible for highly different molecules.
For instance, 1-eicosanol and eicosanoic acid have
the molecular similarity value 0.95 while this value
is 0.52 when the RDKitFP method is used and 0.39
when ECFP is used. At the same time, ECFP gives
a similarity of 1.0 for homologues containing a long
sequence of carbon atoms, for instance for eicosanol
and docosanol.

Figure 2 clearly shows how the proportion of
“poorly predicted” (the average absolute error is greater
than 100) molecules depends on S,,,,. For all methods
but for MCS, this proportion grows rapidly with the
decreasing S,,.. Thus, small values S, indicate that it
is likely that the prediction for the molecule in question
is very inaccurate. For all methods but for ECFP, the
total number of molecules (also shown in Fig. 2 for
convenience) in the respective range drops rapidly
with a drop in the value S,,,,. In general, Figs. 1 and
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2 show that ECFP is the best algorithm for calculating
molecular similarity for this task.

In Figs. 1 and 2 and in the following sections, the
proportion of “poorly predicted” compounds, i.e.,
compounds for which the absolute prediction error is
greater than 100, is mainly discussed. Nevertheless,
it is interesting to consider the error distribution
for different ranges of S, Such absolute error
distributions are shown in Fig. 3 for the ECFP and
RDKIitFP algorithms. In the case of ECFP, we can see
that if S;,c > 0.9, the vast majority of absolute error
values do not exceed 50 while for absolute error values
greater than 100, molecules with Sy, < 0.5 begin to
dominate. There are similar patterns for the RDKitFP
algorithm.

Quantitative Comparison
of Molecular Similarity Calculation Methods

If some molecular similarity value is used as a
threshold, molecular similarity can be used as the
simplest predictor of whether a given molecule is
“poorly predicted”. If the threshold value changes
from 0 to 1, the prediction sensitivity (the proportion
of identified “poorly predicted” molecules among all
“poorly predicted” molecules) will increase and the
specificity will decrease. Thus, it is possible to construct
a receiver operator characteristic (ROC) curve [26, 27]
characterizing the reliability of a given molecular
similarity metric when used as a predictor. The area
under this curve is [27] a metric of the accuracy of such
a predictor.

Table 1 shows the area under the curve for various
molecular similarity algorithms. At the same time, unlike
Figs. 1 and 2, the RDKIitFP and ECFP algorithms with
different values of the maxPath and radius parameters
were considered in this case. Table 1 gives the area
under the curve for different values of these parameters.
Vol. 99
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Fig. 2. Dependence of the total number of molecules N (solid circles and lines) and the fraction of "poorly predicted
molecules” (the absolute prediction error is greater than 100) F (rectangles) on the value S,,,,, (maximum molecular similarity
value for all pairs including the molecule involved and molecules from the training set).
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Fig. 3. Distribution of the number of molecules N over the absolute prediction error for different values S, (the maximum
molecular similarity value for all pairs that include the molecule involved and the molecules from the training set) for the two

molecular similarity calculation methods.

The maxPath (RDKIitFP “molecular fingerprints”) and
radius (ECFP “molecular fingerprints”) parameters
characterize the size of the substructures to which the
“molecular fingerprint” bits correspond. The higher the
values of these parameters, the larger substructures are
considered.

Table 1 shows that the ECFP algorithm is best
suited for this purpose, and there is practically no
dependence on the radius parameter. The RDKitFP
algorithm (when maxPath is 6 and higher) yields worse
results. Other algorithms produce unreliable results.
Note that the value of the area under the curve 0.5
corresponds to a random classifier, and the value 1
corresponds to the ideal classifier [26]. A value of 0.7 is
sometimes considered the lowest acceptable [27]. ROC
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curves for molecular similarity calculation algorithms
based on “molecular fingerprints” are given in Fig. 4.
One can see that RDKitFP with maxPath = 3 fails
to give any satisfactory accuracy, and ECFP exceeds
RDK:itFP.

Reliability of Identification of a Number
of Nitrogen-Containing Compounds

Unsymmetrical dimethylhydrazine (UDMH) is a
toxic compound used as a rocket fuel. When stored in
an uncontrolled way and released into the environment,
this compound forms a variety of transformation
products [9, 12, 28], many of which are no less toxic than
UDMH itself [12]. Studying UDMH transformation
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Table 1. Area under the ROC curve when using different
molecular similarity metrics as a predictor of whether a
molecule is “poorly predicted” or not

Method Area under the curve
RDKIitFP (maxPath = 3) 0.62
RDKIitFP (maxPath = 6) 0.69
RDKIitFP (maxPath = 12) 0.70
RDKIitFP (maxPath = 15) 0.69
ECFP (radius = 3) 0.72
ECFP (radius = 6) 0.72
ECFP (radius = 12) 0.72
MCS 0.55
Rascal 0.61
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Fig. 4. ROC curves (specificity-sensitivity curves) for
predicting whether a molecule is “poorly predicted”
(the absolute prediction error is greater than 100) using
different molecular similarity calculation algorithms.
Curves for algorithms, for which the area under the curve
differs by no more than 0.02, are labeled with a single line
type for readability.

products is an important task. The structures of most
transformation products are still unknown [9]. Various
chromatography-mass spectrometry techniques are
used to pre-determine the structures of the UDMH
transformation products in complex mixtures. Recently,
work [9] has been published that used prediction of
retention indices in the polar stationary phase to confirm
the structures of unknown UDMH transformation
products. If the difference between the observed and
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predicted index exceeded 100, the candidate structure
was discarded.

A total of 1,754 of 9,408 (19%) molecules in the
dataset are “poorly predicted”. However, among
molecules with S, < 0.5 (the ECFP algorithm), 31%
are “poorly predicted”. Table 2 shows the number of
“poorly predicted” molecules for different ranges of
Smax and the mean and median absolute error values
for these ranges. The error values in Table 2 differ
from those in the previous work [16], where exactly
the same model was used, due to the fact that errors
in [16] were calculated for all records of the NIST
database, and the data in this work was previously
averaged over all records for each compound. Thus,
the contribution of those compounds that have many
records in the NIST database to the average absolute
error has been significantly reduced since if there are
many records for the compound, the error modulus
is calculated for each record and all these values (for
each of the records for all compounds) are averaged.
The average absolute error is the quotient of the
sum of error modules and the number of records or
molecules. In this work, each compound corresponds
to one sum of error modules, as opposed to [16]. We
noted that most compounds, for each of which the
NIST database contains multiple records, have a
relatively simple structure and, on average, predictions
for such compounds are more accurate than for all
compounds. In the NIST database, most structures
have exactly one record, but for some structures (for
instance, molecules such as benzene and ethanol),
the database contains many records. The difference
in the approach to calculating the average absolute
error leads to the difference in the values given in [16]
and in Table 2.

Figure 5 shows the structures proposed in [9] as
structures of the UDMH transformation products using
the prediction of the polar stationary phase retention
indices. For each of the structures, molecular similarity
(the ECFP algorithm) with the closest structure
from the NIST database is shown. Two structures are
contained in the NIST database — this value is 1.0 for
them. For other structures, this value does not exceed
0.5. For a number of structures, this value is even less
than 0.2. Thus, one cannot be sure that such predictions
lead to correct results, and the results presented should
be treated with caution. Nevertheless, structures
confirmed by several methods of chromatography-
mass spectrometry (gas and liquid) and several
machine learning methods can be considered as
sufficiently reliable [9, 12].
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Table 2. Number of “poorly predicted” molecules and accuracy metrics for different ranges of S, (the ECFP algorithm)

“« . » Proportion .
Range Poorly predicted Molecules in total | of “poorly predicted” Mean Median
molecules absolute error absolute error
molecules, %

All molecules 1754 9408 18.6 70.6 28.4
Smax > 0.7 83 1419 5.8 25.8 8.3
Sinax > 0.5 512 5239 9.8 41.7 15.9
Sinax < 0.5 1168 3820 30.6 109.9 57.0
Snax < 0.3 280 583 48.0 173.6 95.4
Siax < 0.2 50 30 60 311.0 181.7
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Fig. 5. Structures of the transformation products of unsymmetrical dimethylhydrazine proposed in [9] and the values S,
(the value of molecular similarity between the molecule involved and its closest molecule from the training set) for each of
them. The molecular similarity calculation method is ECFP.

JOURNAL OF PHYSICAL CHEMISTRY

Vol. 99

No. 1

2025



140

CONCLUSIONS

The accuracy of models predicting gas
chromatographic retention indices is estimated using
metrics such as the mean absolute error, which,
however, do not allow estimating the accuracy for
particular molecules. In this work, we showed that the
fact that there are molecules in the training set that
are close in structure to the molecule whose retention
index is to be predicted greatly increases the probability
that the prediction for this molecule will be accurate.
The most suitable way to assess molecular similarity
for this task is to use ECFP “molecular fingerprints”.
When the prediction of retention indices is used to
construct structures of unknown chemical compounds,
one needs to estimate the accuracy of prediction in one
way or another. Thus, for instance, in one of the works
that study transformation products of unsymmetrical
dimethylhydrazine [9], the training dataset lacked
molecules with high values of molecular similarity
measure for most of the considered structures.
Therefore, the conclusions made by predicting retention
indices for these structures may not be entirely reliable.
The source code of the scripts used to perform this
work is available online: https://github.com/mtshn/
molsimwax
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