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Abstract. Potentials of the embedded atom model (EAM) for liquid silicon and germanium are proposed. 
The potentials are calculated from diffraction data using the Schommers algorithm and presented in the 
form of tables and piecewise continuous polynomials. Each pairwise contribution to the potential has a 
form close to a hard-sphere one with a step down. The properties of liquid Si and Ge at temperatures 
up to 2000 K are calculated, viz. the density, energy, bulk modulus, and self-diffusion coefficients. The 
agreement with the experiment is noted to be good. The bond direction is found to almost completely 
disappear after melting for ordinary densities of liquid Si and Ge. The bond direction is assumed to be 
able to appear at heating and when the density of melts is decreased by 2–3 times.
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INTRODUCTION

Below, we consider the problem of computer 
simulation of liquids resulted from melting and partial 
metallization of substances with the covalent bond. 
Such simple substances are located in the band of 
the Periodic System including silicon and germanium 
(Group 4), antimony (Group 5), and tellurium (Group 6). 
Most of these substances, including silicon and 
germanium, are semiconductors in the solid state and 
exhibit metallic properties in the liquid state. In the 
case of antimony, the contribution of the covalent bond 
in the crystal is small while in tellurium the covalency 
is quite significant. To simulate crystalline covalent 
substances, one usually apply potentials that boost 
orientation (presence of valence angles). However, in 
the liquid state, signs of orientational interaction are not 
always observed. Therefore, the question arises whether 
one and the same interparticle potential can be applied 
when simulating such a system in both crystalline and 
liquid states. If the bond types in the crystal and in the 
liquid are really different, the interparticle interaction 
potentials should be different. This is indicated, 
in particular, by ab initio calculations, which show 
dramatic differences in the structure of the crystal  
and liquid.

Although there have been quite frequent attempts to 
apply unified potentials for crystal and liquid in the case 
of silicon and germanium, good results have not been 
achieved. Below, we consider ways to simulate these 

substances in the liquid state with the usual spherically 
symmetric potentials used for metals.

EAM INTERPARTICLE POTENTIALS 
FOR SILICON AND GERMANIUM

Simulating silicon. Solid silicon is a semiconductor. 
The crystalline lattice of silicon is cubic with a 
coordination number CN = 4. Each atom is located 
at the center of the tetrahedron and connected to its 
neighboring atoms by covalent bonds of the sp3 type. 
The length of this bond is 2.352 Å. Diffraction data on 
the structure of liquid silicon are given in the book by 
Y. Waseda [1], and for pressures of 4–23 GPa they are
given in [2, 3]. The pair correlation function (PCF) of
silicon for the temperature 1733 K is shown in Fig. 1.
The first peak is quite high and narrow, so that the first
coordination sphere is well defined; its radius is 3.05 Å.
The average coordination number CN = 6.24 ± 1.45.
There are data on the density of solid and liquid silicon
up to 2000 K [4, 5], silicon energy up to 3600 K [6, 7],
compressibility [8, 9], self-diffusion coefficients [3, 10],
behavior at high pressures [3, 11, 12], etc.

To simulate substances with the diamond lattice —
carbon, silicon, germanium — by the molecular dynamics 
(MD) method, a number of interparticle potentials
have been proposed that realize the directionality of
bonding, viz. Stillinger-Weber (SW) [13–15], Tersoff 
(Ter) [16–18] and others that depend on the local
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structure, such as environment dependent interatomic 
potential (EDIP) [12, 19, 20]. Such potentials include 
valence angles between the nearest four neighbors 
of the central atom, which allows implementing the 
tetrahedral configuration. A significant number of 
potentials are reported in [21] and given in the NIST 
repository [22]. Potentials that take valence angles into 
account are usually used to calculate the structure, 
diffusion coeff icients, and melting points rather 
than energy characteristics. M. Baskes et al. [23, 24] 
applied the modified embedded atom model (MEAM) 
potential for non-isotropic substances. The ab initio 
method is quite widely used [17, 21]. Data obtained 
by this method were used to calculate potentials by a 
Potfit-type program [25, 26]. The mentioned works 
mainly deal with the models of crystalline silicon  
and its alloys.

The transition to analyzing liquid silicon causes 
difficulties due to a significant change in the bond type. 
In the case of SW and Ter potentials, the maximum 
number of atoms of the model has CN = 6 (44% of 
atoms for SW and 33% for Ter), and the number of 
atoms with CN = 4 is small, viz. 7% in SW and 8% in 
Ter, see Fig. 3 in [17]). The calculated melting points 
of silicon with these potentials are 1400 and 2750 
K (the actual value is 1687 K), respectively. Under 
these conditions, using the SW and Ter potentials is 
questionable. As for the MEAM potential, it was not 
used for liquid silicon in [23, 24].

	 In this connection, in this work, we propose 
the potential of the embedded atom model (EAM [27]) 
for liquid silicon using diffraction data. The potential 
energy of the metal is written as

	 U ri
i

ij
i j

= ( ) + ( )∑ ∑
<

Φ ρ φ .	 (1)

Here, Ф(ρi) is the imbedding potential of the ith 
atom, which depends on the “effective electron density” 
ρ at the location of the atom center, and the second sum 
over pairs of atoms contains the usual pair potential. 
The effective electron density at the location of the atom 
is created by the surrounding atoms and determined by 
the formula
	 ρ ψi ij

j
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where Ψ(rij) is the contribution to the electron density of 
the atom i by neighbor number j. Three fitting functions 
Ф(ρ), φ(r), and Ψ(r) are used in the calculations, so that 
the possibilities of matching the calculated properties 
with experimental values are very broad.

To find the pair contribution φ(r), we apply the 
Schommers algorithm [28, 29], in which the correction 
to the current version of the pair contribution to the 
potential is determined by the difference between the 
diffraction and PCF models. Below, we define the 
distance between the two plots — the PCF histograms 
g0(ri) and g(ri) — through the residual Rg
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where g0 (rj) is the histogram of the objective PCF,  
g (r) is the histogram of the PCF model, n1 and n2 are 
the summation boundaries of the tabular data, and j 
is the element number of the PCF histogram. At first, 
we used Y. Waseda’s PCF [1] to construct, using the 
Schommers algorithm, a model of liquid silicon at 
1733 K with a pair potential and a very small residual 
Rg = 0.023 (see Fig. 1). The resulting pair contribution 
to the EAM potential is given in Table 1 and Fig. 2 

Fig. 1. Pair correlation function of Si at 1773 K — (1) diffraction data [1], and (2) EAM potential model.
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with the step dr = 0.05 Å. It resembles a hard-sphere 
one with a step downward. The radius of the cut-off is  
rc = 8.855 Å.

The embedded potential is of the form
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The coefficients a2 and b2 are related to a1 and c1 by 
the condition of continuity of the function Ф(ρ) and its 
derivative: a2 = a1 + c1 (ρ1–ρ0)2 and b2 = 2c1(ρ1–ρ0). 
The values a1, c1, c2, ρ11 must be given. The parameters 
of the EAM embedded potential Φ(ρ) are given in 
Table 2. The values ρ > ρ2 can be obtained only in 
highly compressed states.

Using the EAM potential, we constructed a series 
of models of liquid silicon consisting of 2048 atoms 
in a basic cube with periodic boundary conditions, at 
temperatures of 1690–2000 K, in NVT and NpT modes. 
The pair correlation function g(r) at 1733 K is shown in 
Fig. 1 in excellent agreement with diffraction data [1].

The CN distribution of the silicon model shown in 
Fig. 3 has the form characteristic of dense packings, and 
CN = 4 is not prominent in any way. This distribution 
is close to the one obtained by the ab initio method 
at 1800 K [21]. Chain or tetrahedral packing is not 
visible in liquid silicon. Melting destroys the network  
structure.

	 The distribution of azimuthal angles (Fig. 4) 
is also not similar to the case of the Ter potential [17, 
30], where one can see an acute maximum at angles of 
~60°. Ab initio calculations [21] lead to a curve with two 
maximums for the angles 60° and 90°, as in the case of 
EAM (Fig. 4); however, the right maximum at 90° in 

[21] is slightly higher than the left peak. The SW and 
Ter potentials lead to angular distributions that differ 
greatly in shape from the curve in Fig. 4.

The results of calculations of liquid silicon properties 
at temperatures up to 2000 K are given in Table 3. As 
we can see from the table, the EAM potential allows 
obtaining the correct dependence of the liquid silicon 
density on temperature up to 2000 K, good agreement 
of the PCF with the experiment at 1733 K (Fig. 1), and 
good agreement of the modulus of compression with the 
experiment. At 1733 K, the heat capacities Cv and Cp of 
the silicon model were 16.9 and 21.4 J/(mol K). The 
adiabatic modulus Ks = 35.7 GPa [8, 9] was recalculated 
to the isothermal one KT given the ratio of heat 
capacities Cp /Cv = 1.266; as a result, КТ  = 28.2 GPa. 
For the value c1 = 2.05 eV, the modulus value found 
from the pressure-volume relationship is КТ = 30.6 GPa. 
Upon heating from 1690 to 2000 K, the modulus КТ 
decreases rather slowly, by only 10%. Good agreement 
with the experiment [7] is obtained for the energy of 
liquid silicon. With the temperature increasing, a slight 
reduction in the energy of the models is observed due 
to the failure to take into account the electronic heat 
capacity of the silicon models. The electronic heat  
is ~2 J/(mol K) capacity for 1600–2000 K.

The self-diffusion coefficient D was found from the 
time dependence of the mean square of the particle 
displacement. The EAM potential yields high values 
of the coefficient D ~2 × 10–4 cm2/s (Table 3). The 
ab initio method yields the value D = 2.26 × 10–4  
of the same order [21, 32]. However, the SW and 
Ter potentials result in self-diffusion coefficients of 
liquid silicon of the order of 10–5 cm2/s [30, 33]. 
The effect of increased self-diffusion coeff icient  
(up to ~10–4 cm2/s) was observed earlier for liquid 
antimony models for T > 1000 K [34], but it gradually 
disappears upon heating.

Fig. 2. Pair contribution to the EAM potential of liquid silicon. Schommers algorithm.
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Table 1. Pair contributions to the liquid silicon potential. Schommers algorithm at 1733 K. Pair correlation function [1], 
residual Rg = 0.023

r, Å φ(r), eV r, Å φ(r), eV r, Å φ(r), eV r, Å φ(r), eV
1.5 122.291000 3.35 –0.073576 5.2 –0.000563 7.05 –0.000178

1.55 101.294000 3.4 –0.073472 5.25 –0.002079 7.1 –0.000617
1.6 82.287700 3.45 –0.072458 5.3 –0.003564 7.15 –0.000834

1.65 65.261100 3.5 –0.071103 5.35 –0.005022 7.2 –0.000750
1.7 50.214400 3.55 –0.069557 5.4 –0.006002 7.25 –0.000432
1.75 37.180300 3.6 –0.067373 5.45 –0.006646 7.3 0.000022
1.8 26.239600 3.65 –0.064463 5.5 –0.007191 7.35 0.000467

1.85 17.473600 3.7 –0.060170 5.55 –0.007183 7.4 0.001153
1.9 10.839500 3.75 –0.054712 5.6 –0.006751 7.45 0.001830

1.95 6.067210 3.8 –0.048719 5.65 –0.005952 7.5 0.002192
2.00 2.767880 3.85 –0.042092 5.7 –0.005362 7.55 0.002491
2.05 0.755346 3.9 –0.036168 5.75 –0.005026 7.6 0.002586
2.1 0.159373 3.95 –0.030396 5.8 –0.004385 7.65 0.002628
2.15 –0.001554 4.00 –0.023942 5.85 –0.003832 7.7 0.002827
2.2 –0.101008 4.05 –0.016892 5.9 –0.003009 7.75 0.002638

2.25 –0.152195 4.1 –0.009745 5.95 –0.002833 7.8 0.002702
2.3 –0.189574 4.15 –0.002723 6 –0.002206 7.85 0.002747

2.35 –0.213938 4.2 0.003849 6.05 –0.001500 7.9 0.002539
2.4 –0.228382 4.25 0.009620 6.1 –0.000687 7.95 0.002463

2.45 –0.234435 4.3 0.014813 6.15 –0.000636 8 0.002386
2.5 –0.232160 4.35 0.019150 6.2 –0.000856 8.05 0.002338

2.55 –0.224053 4.4 0.023231 6.25 –0.001311 8.1 0.002013
2.6 –0.209804 4.45 0.026716 6.3 –0.001707 8.15 0.001976

2.65 –0.191907 4.5 0.029711 6.35 –0.002199 8.2 0.001765
2.7 –0.171074 4.55 0.032243 6.4 –0.002325 8.25 0.001668
2.75 –0.150465 4.6 0.033630 6.45 –0.002367 8.3 0.001353
2.8 –0.129192 4.65 0.034171 6.5 –0.001990 8.35 0.001162

2.85 –0.108827 4.7 0.033699 6.55 –0.001173 8.4 0.000972
2.9 –0.094394 4.75 0.032001 6.6 –0.000397 8.45 0.000613

2.95 –0.086053 4.8 0.028947 6.65 0.000469 8.5 0.000282
3 –0.081530 4.85 0.025344 6.7 0.001206 8.55 0.000034

3.05 –0.077580 4.9 0.020481 6.75 0.001713 8.6 –0.000053
3.1 –0.074926 4.95 0.015896 6.8 0.002049 8.65 –0.000177
3.15 –0.073313 5 0.011360 6.85 0.001965 8.7 –0.000182
3.2 –0.073026 5.05 0.007204 6.9 0.001731 8.75 –0.000497

3.25 –0.072734 5.1 0.003855 6.95 0.000888 8.8 –0.000248
3.3 –0.073358 5.15 0.001455 7 0.000334 8.85 0.000000

Table 2. Liquid silicon. Parameters of the embedded potential Ф(ρ)	

p1 0.46785 n 2048
p2 0.80 dr, Å 0.05
r1 0.875 r0, Å 9.86
r2 1.125 rc, Å 8.855

a1, eV –3.2823 c1, Å 2.05
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The proximity of the silicon potential to the hard-
sphere potential with a step down (Fig. 2) allows us to 
verify the formula for the self-diffusion coefficient of the 
hard-sphere model [35]

	 D D n n n nHS = ( ) −( ) + −( )( )0
2 21 1 09 1 0 4 0 83. . . ,	(5)

where n = (N/V) σ3, N is the number of particles in 
the volume V, σ is the sphere diameter, m is its mass, 
D0 = (3/8)σ(kBT/πm)1/2. Multiplying the numerator 
and denominator of the fraction in the parentheses 
by Avogadro's number, we obtain, for T = 1733 K,  

σ = 2.20 Å, N/V = 0.053932 at/Å3, n = 0.5743,  
D0 = (3/8) 2.2 × 10–8 × (8.31 × 107 × 1733/π/28.085)1/2 =  
= 3.33 × 10–4 cm2/s, and finally DHS = 2.86 × 10–4 cm2/s.  
This value agrees well with 2.65 × 10–4 obtained by the 
MD method and with the value D found by the ab initio 
method (2.02.10–4 cm2/s for 1800°С [21]).

The self-diffusion mechanism can be refined by 
checking whether the Stokes-Einstein equation relating 
self-diffusion to viscosity holds for liquid silicon

	 D
kT

ra
=

6πη
,	 (6)

Fig. 3. The frequency of occurrence of the CN Z in the liquid silicon model at 1690 K. The radius of the coordination sphere 
is 3.05 Å — (1) EAM potential, and (2) 1800 K, ab initio method [21].

Fig. 4. Azimuth angles θ in the Si model at 1733 K.
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where η is the dynamic viscosity and ra is the atom 
radius. Choosing a value of 6.05 mP [4] for the viscosity 
at 1700 K and ra = 1.1 × 10–8 cm (see above), we obtain 
D = 1.9 × 10–4 cm2/s, which agrees with the actual 
value (1.9 – 2.0) × 10–4 (Table 3). The fulfillment 
of the Stokes-Einstein equation means that there 
is no association sign between the real liquid and, 
consequently, the computer model.

Thus, the simulation results show that the properties 
of liquid silicon are well described within the framework 
of the theory of simple liquids with a potential close to 
the hard-sphere potential, with a diameter of spheres 
being 2.20 Å. This diameter is smaller than the 
interatomic distance in the crystal (2.352 Å).

When simulating liquid silicon, we can use the 
pair contribution to the EAM potential given as a 
piecewise continuous polynomial [29, 36] rather than 
as a data table. We mark consecutive k intervals on the 
abscissa axis r by the division points r1 > 0, r2, r3 …rk+1. 
The coordinate r1 should be slightly smaller than the 
minimum interatomic distance rmin. The first interval is 
enclosed between the points r1 and r2. The coordinate 
rk+1 must equal the cut-off radius of the potential rc. 
The Schommers algorithm yields the values of the 

potential in the intervals from the first to the kth, i.e., 
for r1 ≤ r ≤ rk+1, and it does not work at distances  
r < r1. At r > r1, the potential is described by the  
expression

	 ϕ( ), ( ) , ,r d r r H r r
i

k

m

n

im i
m

i i eV = − ( )
= =

+ +∑ ∑
1 0

1 1

	 (7)

where i is the number of the interval on the distance 
axis, dim are the coefficients of the series expansion, 
and the Heaviside function H(ri, ri+1) equals 1 in the 
interval ri ≤ r ≤ ri+1 and zero in other intervals. For 
all r = ri, the potential itself and its first derivative 
are continuous. The distance r is given in Å. The 
degree of the polynomials is n. In the case of silicon, 
n = 7, k = 4 is chosen. The coefficients dim were 
obtained in the data approximation program (Table 1)  
and are given in Table 4. In this procedure, the 
potential values were reliably determined for distances  
r ≥ r1 = 2.15 Å, which actually occurred in the silicon 
model at 1733 K.

Since the minimum interatomic distances rmin 
decrease at high temperatures and pressures, we need to 

Table 3. Properties of Si models obtained by the MD method at p ~0.001 GPa, p1= 0.46785, p2 = 0.800, c1= 2.0500

T, K

d, g/cm3

<ρ>b Rg

–E, kJ/mol KT, GPa D × 105, cm2/s

MD Exp. [4] Exp. [5] –EMD –Eexp [7] MD Exp.
[9, 31] MD Ab initio 

[21, 32]

1 2 3 4 5 6 7 8 9 10 11 12

0 – – – – – – 445.67 [6] – – – –

298a 2.329 – 2.328 1.0153 – 358.30 442.46 – 98.74 – –

1000a – – 2.320 – – – 425.37 – – – –

1300a – – 2.305 – – – 417.22 – – – –

1500a – – 2.297 – – – 411.61 – – – –

1690a – – 2.285 – – – 405.25 – – – –

1690 liq 2.525 – – 1.0185 – 355.90 356.00 30.4 28.2 25.3 –

1700 2.523 2.547 – 1.0211 – 355.71 355.65 – 37.4 24.2 –

1733 2.517 2.515 1.0145 0.030 354.92 354.75 30.6 – 26.5 –

1750 2.516 2.534 – 1.0159 – 354.60 354.29 – 38.6 – –

1800 2.508 2.520 – 1.0158 – 353.52 352.93 27.3 39.4 26.1 19–20

1900 2.491 2.494 – 1.0038 – 351.47 350.21 39.8 26.6 –

2000 2.470 2.467 – 0.9999 – 349.34 347.49 27.6 – 32.3 –
a Crystal.
b Standard deviations grow from top to bottom from 0.073 to 0.079.
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extrapolate the potential to distances smaller than rmin. 
For silicon, it is assumed that when r < r1,

ϕ ϕ( ), .

. . . .

r

r r r

 eV  

   

= +

+ − ⋅ + ⋅ − ⋅ +

( )2 15

502 94 3292 6 7183 9 52233 2

Å

77( ),

where r  is expressed in Å and φ(2.15 Å) =  
= –0.0787061 eV. The transition to writing the potential 
in form (7) results in a small loss of accuracy, so that 
the residual Rg of the function g(r) of silicon at 1733 K 
increases from 0.023 to ~0.06.

Simulating germanium. Solid germanium is a 
semiconductor. The crystalline lattice is the same as 
that of silicon. Diffraction data on the structure of liquid 

germanium are given in [1, 33, 37], and at pressures up 
to 25 GPa they are given in [38]. The pair correlation 
function of germanium at 1253 K is shown in Fig. 5. 
The first peak at 2.75 Å is quite high and narrow, so 
that the first coordination sphere is well defined, with its 
radius being 3.60 Å. The average coordination number 
CN = 8.63 ± 1.41. There are data on the density of 
solid and liquid germanium up to 1900 K [4, 5, 9, 
39], compressibility [40], energy of germanium up to  
2000 K [6], viscosity [39, 41], self-diffusion coefficients 
[10, 33, 42], properties at high pressures [11, 43, 44], 
shock compression [12, 45], etc.

A considerable number of works are devoted to 
simulating liquid germanium with SW-type potentials 
[14, 15, 33, 46], Tersoff potentials [18], and strong bond 

Table 4. Expansion coefficients of the pair contribution to the EAM potential of silicon	

aim

Interval number i / Interval boundaries ri – ri+1, Å

1 / 2.10 – 2.90 2 / 2.90 – 4.20 3 / 4.20 – 6.00 4 / 6.00 – 8.85

ai0 –0.97113050520420D–01 0.31690669711679D–02 –0.31873278785497D–02 0.00000000000000D+00

ai1 0.21899378299713D+00 0.12773799896240D+00 0.34430783707649D–02 0.00000000000000D+00

ai2 –0.62291081298754D+01 0.27154179420195D–01 0.84230139063026D–01 –0.35165857912545D–01

ai3 –0.79015407873123D+02 0.43481827129286D+00 0.56141844748633D+00 –0.13246413781381D+00

ai4 –0.41364497186011D+03 0.13526037867501D+01 0.11214214299747D+01 –0.16534787554672D+00

ai5 –0.10115477873406D+04 0.14864527900288D+01 0.89595677539435D+00 –0.93427224218695D–01

ai6 –0.11462934613386D+04 0.74986992706763D+00 0.31125775931700D+00 –0.24739723425154D–01

ai7 –0.48846592560798D+03 0.15751335772576D+00 0.39450678719440D–01 –0.24982008692301D–02

Fig. 5. PCF of liquid germanium — (1) diffraction data at 1253 K [1], and (2) model with the EAM potential. Residual  
Rg = 0.020.



	 ON APPLICABILITY OF EMBEDDED ATOM MODEL (EAM) POTENTIALS � 119

JOURNAL OF PHYSICAL CHEMISTRY Vol. 99 No. 1 2025

Table 5. Pair contribution to the potential of liquid germanium. Schommers algorithm at 1253 K. Pair correlation 
function [1] with correction [50], residual Rg = 0.020

r, Å φ(r), eV r, Å φ(r), eV r, Å φ(r), eV r, Å φ(r), eV

1.5 122.300000 3.35 –0.046844 5.2 0.002804 7.05 0.000684
1.55 101.303000 3.4 –0.047240 5.25 0.001824 7.1 0.000647
1.6 82.303100 3.45 –0.046399 5.3 0.000588 7.15 0.000611

1.65 65.292800 3.5 –0.044678 5.35 –0.001230 7.2 0.000504
1.7 50.263000 3.55 –0.043242 5.4 –0.003176 7.25 0.000431
1.75 37.220100 3.6 –0.042177 5.45 –0.005154 7.3 0.000489
1.8 26.207900 3.65 –0.042683 5.5 –0.006862 7.35 0.000379

1.85 17.311800 3.7 –0.044350 5.55 –0.008321 7.4 0.000296
1.9 10.611500 3.75 –0.046536 5.6 –0.009686 7.45 0.000160

1.95 6.066300 3.8 –0.048615 5.65 –0.010724 7.5 0.000095
2.00 3.391330 3.85 –0.050613 5.7 –0.011583 7.55 –0.000021
2.05 2.031660 3.9 –0.051642 5.75 –0.012469 7.6 0.000084
2.1 1.338040 3.95 –0.051700 5.8 –0.013597 7.65 0.000363
2.15 0.847698 4.00 –0.050500 5.85 –0.014618 7.7 0.000651
2.2 0.407810 4.05 –0.048100 5.9 –0.015344 7.75 0.000941

2.25 0.242786 4.1 –0.044900 5.95 –0.015799 7.8 0.001186
2.3 0.163421 4.15 –0.041400 6 –0.015927 7.85 0.001263

2.35 0.098270 4.2 –0.037700 6.05 –0.015415 7.9 0.001323
2.4 0.045892 4.25 –0.034200 6.1 –0.014349 7.95 0.001494

2.45 0.002577 4.3 –0.030800 6.15 –0.013169 8 0.001467
2.5 –0.033705 4.35 –0.027300 6.2 –0.011718 8.05 0.001491

2.55 –0.063315 4.4 –0.023400 6.25 –0.009987 8.1 0.001490
2.6 –0.086566 4.45 –0.018900 6.3 –0.008416 8.15 0.001489

2.65 –0.103683 4.5 –0.014400 6.35 –0.007194 8.2 0.001543
2.7 –0.114948 4.55 –0.010100 6.4 –0.006185 8.25 0.001735
2.75 –0.120340 4.6 –0.006120 6.45 –0.005239 8.3 0.001765
2.8 –0.120399 4.65 –0.002540 6.5 –0.004468 8.35 0.001859

2.85 –0.115695 4.7 –0.000011 6.55 –0.003829 8.4 0.001948
2.9 –0.107163 4.75 0.001530 6.6 –0.003287 8.45 0.001727

2.95 –0.095625 4.8 0.002330 6.65 –0.002381 8.5 0.001419
3 –0.082393 4.85 0.002780 6.7 –0.001598 8.55 0.001148

3.05 –0.069123 4.9 0.002900 6.75 –0.000845 8.6 0.000767
3.1 –0.057489 4.95 0.002840 6.8 –0.000322 8.65 0.000519
3.15 –0.049449 5 0.002930 6.85 0.000049 8.7 0.000388
3.2 –0.045410 5.05 0.003130 6.9 0.000385 8.75 0.000199

3.25 –0.044939 5.1 0.003420 6.95 0.000652 8.8 0.000043
3.3 –0.045923 5.15 0.003320 7 0.000703 8.85 0.000000

Table 6. Liquid germanium. Parameters of the embedded potential

p1 0.57450 n 2048
p2 0.80 dr, Å 0.05
ρ1 0.875 r0, Å 9.86
ρ2 1.125 rс, Å 8.96
a1 –2.7455, eV c1, eV 1.5559
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potentials [44]. A number of potentials are given in the 
NIST repository [22]. The MEAM potential was also 
applied in [18, 24, 47], the machine learning potential 
was applied in [48], and the ab initio method was applied 
in [44, 49]. The average CN of liquid germanium (8.63) 
is higher than that of silicon, so that the contribution 
of the covalent bond is smaller in germanium. 
Hence, the EAM potential for liquid germanium may  
be quite suitable.

We determined the pair contribution to the EAM 
potential for germanium using the Schommers 
algorithm, similar to the case of silicon. The PCF of 
liquid Ge at 1253 K was calculated using the structure 
factor [1] with the least squares method involved [50]. 

The liquid model of 2048 atoms was constructed in 
154 iterations with the final residual Rg = 0.020. As we 
can see from Fig. 5, the real and model PCF are in good 
agreement. The pair contribution to the EAM potential 
of liquid Ge is shown in Fig. 6 and given in Table 5. It is 
also similar to the hard-sphere one with a step down. 
The parameters of the embedded potential are given  
in Table 6.

When modeling liquid germanium, one can also use 
the pair contribution to the EAM potential given as a 
piecewise continuous polynomial (7) rather than a data 
table. In the case of germanium, we chose n = 7, k = 4. 
The coefficients in formula (7) for germanium are given 
in Table 7.

Table 7. Decomposition coefficients of the pair contribution to the EAM potential of germanium

aim

Interval number i / Interval boundaries ri – ri+1, Å

1/2.10–2.80 2/2.80–4.20 3/4.20–6.00 4/6.00–8.95

ai0 –0.12914022803307D+00 0.31741657294333D–02 –0.34244309645146D–02 0.00000000000000D+00

ai1 0.36918279528618D+00 0.12768036127090D+00 0.16339456196874D–02 0.00000000000000D+00

ai2 –0.78049397398888D+01 –0.12277981456606D+00 0.80042188493656D–01 –0.29761810826526D–01

ai3 –0.10718496961367D+03 –0.65316546093368D+00 0.55860454460684D+00 –0.12030635388921D+00

ai4 –0.56677608973579D+03 –0.15237788383222D+01 0.11235902756831D+01 –0.15270893689047D+00

ai5 –0.14389761345321D+04 –0.20467986563964D+01 0.90001319360143D+00 –0.86186740805348D–01

ai6 –0.17372676812327D+04 –0.12959413204484D+01 0.31329384464215D+00 –0.22597590985478D–01

ai7 –0.80443673950751D+03 –0.29391029780645D+00 0.39797389267772D–01 –0.22478041469157D–02

Fig. 6. Pair contribution to the EAM potential of germanium, 1253 K.
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This potential works in the interval 2.20–8.95 Å. 
An upward branch should be smoothly added to it at  
r < 2.20 Å.

Using the EAM potential, we constructed a series 
of liquid germanium models consisting of 2048 atoms 
in a basic cube with periodic boundary conditions, 
at temperatures 1200–1800 K, in the NVT and NpT 
modes. The pair correlation function g(r) at 1253 K is 
shown in Fig. 5 in excellent agreement with diffraction 
data [1].

Figure 7 shows the distribution of CN of liquid 
germanium atoms at 1253 K calculated with the 
radius of the nearest-neighbor sphere of 3.20 Å. It has 
a form characteristic of simple metals and passes 
through the maximum when Z = 6. The average  

value of Z = 6.17 ± 1.35. Choosing the radius of 
the sphere of nearest neighbors to be 3.60 Å, we 
have Z = 8.63 ± 1.41. As in the case of silicon, 
predominantly tetrahedral packing is not observed. The 
distribution of CN in germanium is very similar to the  
case of silicon.

The distribution of azimuth angles also looks similar 
to silicon (Fig. 8), but with the maximum shifted 
from the value 60° in silicon to the value 56°. For a 
smaller sphere radius of 2.8 Å, the first maximum is at 
the angle 65°. In the ab initio method [51], the angle 
distribution is similar, but at the radius 2.8 Å, the 
first maximum at 80° is much lower than the second 
maximum (at 100°). The tetrahedral angle at 109° is still 
quite far away.

Fig. 7. Coordination numbers of the germanium model at 1253 K. Radius of the sphere of nearest neighbors is 3.6 Å.

Fig. 8. Azimuth angles in the Ge model at 1253 K — (1) radius of the nearest neighbor sphere 3.6 Å, and (2) sphere radius 2.8 Å.
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The behavior of the structure of liquid Si and Ge as 
compared to what we see for the SW and Ter potentials 
indicates the weakening of the covalent bond when the 
elements are shifted from top to bottom in the Periodic 
System, from silicon to germanium.

The results of calculations of liquid germanium 
properties in the NpT mode at temperatures up to 
2000 K are given in Table 8. Published data on the 
density show a significant scatter. The best agreement 
is obtained with the data of [5, 52]. There is also good 
agreement with the experiment on the PCF form at 
1253 K (the small residual Rg = 0.020), as well as with 
ab initio PCF at 2000 K [51]. The discrepancy with the 
experiment in terms of model energies is only 3 kJ/mol 
at 2000 K (electron energies not taken into account). 
The heat capacity of liquid germanium is close to  
23 J/(mol K), i.e., to the classical value 3R. The real 
heat capacity of liquid germanium is slightly higher,  
27.6 J/mol/K.

The speed of sound in liquid germanium was measured 
in [31] at temperatures 1215–1443 K. At 1253 K, the 
adiabatic compressibility is βs = 2.52 × 10–11 m2/N, so 
the adiabatic compressive modulus Ks = 1/βs = 39.7 GPa.  
According to MD data, the heat capacity ratio  

Cp/Cv = 1.26. Accordingly, the isothermal modulus is 
КТ = KsСv/Cp = 31.5 GPa. For c1 = 1.5559, the value 
of the model modulus found from the pressure-volume 
relationship is КТ = 30.8 GPa. When heated from 1690 
to 2000 K, the modulus of the model КТ decreases  
to 18.7 GPa.

The closeness of the liquid germanium potential to 
the hard-sphere potential (see Fig. 6) allows us to verify 
formula (5) for the self-diffusion coefficient. Taking the 
diameter of the hard sphere σ = 2.45 Å, we find for the 
model at 1253 K N/V = 0.045719 at/Å3, n = 0.6723,  
D0 = (3/8) × 2.45 × 10–8 × (8.31 × 107 × 1253/π/72.59)1/2 =  
= 1.9632 × 10–4 cm2/s, and finally DHS = 1.13 × 10–4 cm2/s. 
This value agrees well with 1.19 × 10–4 obtained by the 
MD method. Calculations by the ab initio method yield 
at 1250 K a close value D = 0.95 × 10–4 cm2/s [49]. 
The pseudopotential calculation yields 1.27 × 10–4 [53]. 
The results of direct measurements of self-diffusion 
in liquid germanium are close to those given above  
(see Table 8).

As a result, we have that the properties of liquid 
germanium are well described by the EAM potential, 
which is close to the hard-sphere potential with  
a step down.

Table 8. Properties of Ge models constructed by the MD method at p  ~0.001 GPa

T, K
d, g/cm3

<ρ>b Rg

–E, kJ/mol KT, GPa D × 105, cm2/s

MD Exp [52] Exp [5] Exp [39] –EMD –Eexp [6] MD Exp [31] MD Exp [10]

1 2 3 4 5 6 7 8 9 10 11 12 13

0 – – – – – – – 369.04 – – – –

298a – – 5.372 – – – 236.01 364.40 – – – –

673 – – 5.333 – – – – – – – – –

1153 – – 5.284 – – – – – – – – –

1200 5.542 – – 5.58 – – 277.44 341.05 – – 10.1 13.0

1210.4sol – – – – – – 340.76 – – – –

1210.4liq 5.526 – – – 1.00741 – 303.67 303.73 – – – –

1253 5.510 5.47 5.49 5.556 1.00467 0.019 302.75 302.72 30.8 31.5 11.9 13.9

1300 5.485 5.45 5.46 5.535 1.00070 0.021 301.54 301.26 – 31.3 12.5 14.6

1400 5.436 5.41 5.43 5.487 0.99540 – 299.08 298.50 – 30.4 14.0 16.2

1500 5.387 5.35 – 5.445 0.98453 – 296.82 295.74 28.2 29.7 15.8 17.6

1600 5.342 5.30 – 5.400 0.97576 – 294.46 292.98 – – 17.3 19.0

1700 5.295 5.26 – 5.352 0.96786 – 292.17 290.02 – – 18.6 22 [51]

1800 5.236 5.22 – 5.32 0.95652 – 289.72 287.49 – – 19.5 –

1900 5.178 5.16 – – 0.94962 – 287.37 284.70 – – – –

2000 5.135 – – – 0.94245 – 285.18 281.94 18.7 – – 23 [51]
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DISCUSSION OF RESULTS

Previously, it was shown by the ab initio method that 
at high pressures a chemical bond between two atoms 
in liquid silicon arises spontaneously due to a random 
approach of these atoms to a distance less than 2.5 Å 
[21]. In this work, we showed that the behavior of 
liquid silicon and germanium models is well described 
by EAM potentials with almost complete disappearance 
of directionality of the bond. For the coordination 
numbers 6 and higher, the locally isotropic short-
range order turns out to be more favorable. As a result, 
hybridization of electronic states of the sp3 type in liquid 
silicon and germanium is not realized. Many properties 
of liquid silicon and germanium are consistent with 
the concept of isotropic interaction. Hence, potentials 
generating directionality of the bond in crystals  
(SW, Ter, etc.) should be of little use for simulating 
liquid silicon and germanium at densities close to 
ordinary ones. This explains the relatively low accuracy 
of the potentials proposed to describe simultaneously 
the solid and liquid phases of silicon and germanium.

We apply this reasoning, for instance, for carbon 
located above silicon in the Periodic System. When 
moving up the 4th group of elements, the ionization 
potentials of atoms grow (from 7.90 in germanium to 
8.15 eV in silicon and 11.3 in carbon) and, accordingly, 
the limits of temperatures and pressures increase, at 
which gradual transitions from the directional bond 
in carbon (of the sp, sp2 or sp3 type) to the isotropic 
structure of liquid carbon should occur as the density 
grows. Such a transition is observed when simulating 
carbon by the ab initio method at 9000 K and densities 
above 5.8 g/cm3 [54]. Staying within the framework 
of classical molecular dynamics, one should expect 
a smooth change of the interparticle potential at 
compression from the oprion of directional bond 
(SW type) to the isotropic potential. In the transition 
region, it can be realized, for instance, as a sum of 
these two potentials with weights depending on the  
liquid density.

Roughly, when the density decreases by a factor of 
2–3 (due to heating), the mentioned transition can  
occur in silicon and germanium in the opposite 
direction, viz. from an isotropic liquid near the melting 
point to a liquid with the directional bond. This 
prediction can be easily verified by the ab initio method.
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