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Abstract. Potentials of the embedded atom model (EAM) for liquid silicon and germanium are proposed.
The potentials are calculated from diffraction data using the Schommers algorithm and presented in the
form of tables and piecewise continuous polynomials. Each pairwise contribution to the potential has a
form close to a hard-sphere one with a step down. The properties of liquid Si and Ge at temperatures
up to 2000 K are calculated, viz. the density, energy, bulk modulus, and self-diffusion coefficients. The
agreement with the experiment is noted to be good. The bond direction is found to almost completely
disappear after melting for ordinary densities of liquid Si and Ge. The bond direction is assumed to be
able to appear at heating and when the density of melts is decreased by 2—3 times.
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INTRODUCTION

Below, we consider the problem of computer
simulation of liquids resulted from melting and partial
metallization of substances with the covalent bond.
Such simple substances are located in the band of
the Periodic System including silicon and germanium
(Group 4), antimony (Group 5), and tellurium (Group 6).
Most of these substances, including silicon and
germanium, are semiconductors in the solid state and
exhibit metallic properties in the liquid state. In the
case of antimony, the contribution of the covalent bond
in the crystal is small while in tellurium the covalency
is quite significant. To simulate crystalline covalent
substances, one usually apply potentials that boost
orientation (presence of valence angles). However, in
the liquid state, signs of orientational interaction are not
always observed. Therefore, the question arises whether
one and the same interparticle potential can be applied
when simulating such a system in both crystalline and
liquid states. If the bond types in the crystal and in the
liquid are really different, the interparticle interaction
potentials should be different. This is indicated,
in particular, by ab initio calculations, which show
dramatic differences in the structure of the crystal
and liquid.

Although there have been quite frequent attempts to
apply unified potentials for crystal and liquid in the case
of silicon and germanium, good results have not been
achieved. Below, we consider ways to simulate these

substances in the liquid state with the usual spherically
symmetric potentials used for metals.

EAM INTERPARTICLE POTENTIALS
FOR SILICON AND GERMANIUM

Simulating silicon. Solid silicon is a semiconductor.
The crystalline lattice of silicon is cubic with a
coordination number CN = 4. Each atom is located
at the center of the tetrahedron and connected to its
neighboring atoms by covalent bonds of the sp3 type.
The length of this bond is 2.352 A. Diffraction data on
the structure of liquid silicon are given in the book by
Y. Waseda [1], and for pressures of 4—23 GPa they are
given in [2, 3]. The pair correlation function (PCF) of
silicon for the temperature 1733 K is shown in Fig. 1.
The first peak is quite high and narrow, so that the first
coordination sphere is well defined:; its radius is 3.05 A.
The average coordination number CN = 6.24 + 1.45.
There are data on the density of solid and liquid silicon
up to 2000 K [4, 5], silicon energy up to 3600 K [6, 7],
compressibility [8, 9], self-diffusion coefficients [3, 10],
behavior at high pressures [3, 11, 12], etc.

To simulate substances with the diamond lattice —
carbon, silicon, germanium — by the molecular dynamics
(MD) method, a number of interparticle potentials
have been proposed that realize the directionality of
bonding, viz. Stillinger-Weber (SW) [13—15], Tersoff
(Ter) [16—18] and others that depend on the local
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Fig. 1. Pair correlation function of Si at 1773 K — (1) diffraction data [1], and (2) EAM potential model.

structure, such as environment dependent interatomic
potential (EDIP) [12, 19, 20]. Such potentials include
valence angles between the nearest four neighbors
of the central atom, which allows implementing the
tetrahedral configuration. A significant number of
potentials are reported in [21] and given in the NIST
repository [22]. Potentials that take valence angles into
account are usually used to calculate the structure,
diffusion coefficients, and melting points rather
than energy characteristics. M. Baskes et al. [23, 24]
applied the modified embedded atom model (MEAM)
potential for non-isotropic substances. The ab initio
method is quite widely used [17, 21]. Data obtained
by this method were used to calculate potentials by a
Potfit-type program [25, 26]. The mentioned works
mainly deal with the models of crystalline silicon
and its alloys.

The transition to analyzing liquid silicon causes
difficulties due to a significant change in the bond type.
In the case of SW and Ter potentials, the maximum
number of atoms of the model has CN = 6 (44% of
atoms for SW and 33% for Ter), and the number of
atoms with CN = 4 is small, viz. 7% in SW and 8% in
Ter, see Fig. 3 in [17]). The calculated melting points
of silicon with these potentials are 1400 and 2750
K (the actual value is 1687 K), respectively. Under
these conditions, using the SW and Ter potentials is
questionable. As for the MEAM potential, it was not
used for liquid silicon in [23, 24].

In this connection, in this work, we propose
the potential of the embedded atom model (EAM [27])
for liquid silicon using diffraction data. The potential
energy of the metal is written as

U = Z(I)(pl-)+ Zq)(ru)

i<j

(1
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Here, ®(p,) is the imbedding potential of the ith
atom, which depends on the “effective electron density”
p at the location of the atom center, and the second sum
over pairs of atoms contains the usual pair potential.
The effective electron density at the location of the atom
is created by the surrounding atoms and determined by

the formula
pi = > v(ry) )
J

where y(ry) is the contribution to the electron density of
the atom i by neighbor number . Three fitting functions
®(p), ¢(r), and y(r) are used in the calculations, so that
the possibilities of matching the calculated properties
with experimental values are very broad.

To find the pair contribution ¢(r), we apply the
Schommers algorithm [28, 29], in which the correction
to the current version of the pair contribution to the
potential is determined by the difference between the
diffraction and PCF models. Below, we define the
distance between the two plots — the PCF histograms
&o(r;) and g(r;) — through the residual R,

12
R 2
Ry = {m%[go (r7) =2 (r) ]} > (3)

where g, (r;) is the histogram of the objective PCF,
g (r) is the histogram of the PCF model, n; and n, are
the summation boundaries of the tabular data, and j
is the element number of the PCF histogram. At first,
we used Y. Waseda’s PCF [1] to construct, using the
Schommers algorithm, a model of liquid silicon at
1733 K with a pair potential and a very small residual
R, = 0.023 (see Fig. 1). The resulting pair contribution
to the EAM potential is given in Table 1 and Fig. 2
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Fig. 2. Pair contribution to the EAM potential of liquid silicon. Schommers algorithm.

with the step dr = 0.05 A. It resembles a hard-sphere
one with a step downward. The radius of the cut-off is
r.=8.855 A.

The embedded potential is of the form
v(r) = prexp(-pyr), po =1,

®(p) = ay + ¢, (p—py)’
®(p) = a +b2(P—Pl)+Cz(P—Pl)2-

for py<p<p,, 4

The coefficients a, and b, are related to a; and c; by
the condition of continuity of the function ®(p) and its
derivative: a, = a; + ¢, (0;—p0)* and b, = 2¢,(01—00)-
The values a;, ¢, ¢5, p;; must be given. The parameters
of the EAM embedded potential d(p) are given in
Table 2. The values p > p, can be obtained only in
highly compressed states.

Using the EAM potential, we constructed a series
of models of liquid silicon consisting of 2048 atoms
in a basic cube with periodic boundary conditions, at
temperatures of 1690—2000 K, in NVT and NpT modes.
The pair correlation function g(r) at 1733 K is shown in
Fig. 1 in excellent agreement with diffraction data [1].

The CN distribution of the silicon model shown in
Fig. 3 has the form characteristic of dense packings, and
CN = 4 is not prominent in any way. This distribution
is close to the one obtained by the ab initio method
at 1800 K [21]. Chain or tetrahedral packing is not
visible in liquid silicon. Melting destroys the network
structure.

The distribution of azimuthal angles (Fig. 4)
is also not similar to the case of the Ter potential [17,
30], where one can see an acute maximum at angles of
~60°. Ab initio calculations [21] lead to a curve with two
maximums for the angles 60° and 90°, as in the case of
EAM (Fig. 4); however, the right maximum at 90° in
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[21] is slightly higher than the left peak. The SW and
Ter potentials lead to angular distributions that differ
greatly in shape from the curve in Fig. 4.

The results of calculations of liquid silicon properties
at temperatures up to 2000 K are given in Table 3. As
we can see from the table, the EAM potential allows
obtaining the correct dependence of the liquid silicon
density on temperature up to 2000 K, good agreement
of the PCF with the experiment at 1733 K (Fig. 1), and
good agreement of the modulus of compression with the
experiment. At 1733 K, the heat capacities C, and C, of
the silicon model were 16.9 and 21.4 J/(mol K). The
adiabatic modulus K, = 35.7 GPa [8, 9] was recalculated
to the isothermal one Ky given the ratio of heat
capacities C,/C, = 1.266; as a result, K, = 28.2 GPa.
For the value ¢; = 2.05 eV, the modulus value found
from the pressure-volume relationship is K= 30.6 GPa.
Upon heating from 1690 to 2000 K, the modulus K7
decreases rather slowly, by only 10%. Good agreement
with the experiment [7] is obtained for the energy of
liquid silicon. With the temperature increasing, a slight
reduction in the energy of the models is observed due
to the failure to take into account the electronic heat
capacity of the silicon models. The electronic heat
is ~2 J/(mol K) capacity for 1600—2000 K.

The self-diffusion coefficient D was found from the
time dependence of the mean square of the particle
displacement. The EAM potential yields high values
of the coefficient D ~2 x 10~* cm?/s (Table 3). The
ab initio method yields the value D = 2.26 x 10~*
of the same order [21, 32]. However, the SW and
Ter potentials result in self-diffusion coefficients of
liquid silicon of the order of 10~> cm?/s [30, 33].
The effect of increased self-diffusion coefficient
(up to ~10~* cm?/s) was observed earlier for liquid
antimony models for 77> 1000 K [34], but it gradually
disappears upon heating.
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Table 1. Pair contributions to the liquid silicon potential. Schommers algorithm at 1733 K. Pair correlation function [1],
residual R, = 0.023

r, A o(r), eV r,A o(r), eV r, A o(r), eV r, A o(r), eV
1.5 122.291000 3.35 —0.073576 5.2 —0.000563 7.05 —0.000178
1.55 101.294000 3.4 —0.073472 5.25 —0.002079 7.1 —0.000617
1.6 82.287700 3.45 —0.072458 5.3 —0.003564 7.15 —0.000834
1.65 65.261100 3.5 —0.071103 5.35 —0.005022 7.2 —0.000750
1.7 50.214400 3.55 —0.069557 5.4 —0.006002 7.25 —0.000432
1.75 37.180300 3.6 —0.067373 5.45 —0.006646 7.3 0.000022
1.8 26.239600 3.65 —0.064463 5.5 —0.007191 7.35 0.000467
1.85 17.473600 3.7 —0.060170 5.55 —0.007183 7.4 0.001153
1.9 10.839500 3.75 —0.054712 5.6 —0.006751 7.45 0.001830
1.95 6.067210 3.8 —0.048719 5.65 —0.005952 7.5 0.002192
2.00 2.767880 3.85 —0.042092 5.7 —0.005362 7.55 0.002491
2.05 0.755346 3.9 —0.036168 5.75 —0.005026 7.6 0.002586
2.1 0.159373 3.95 —0.030396 5.8 —0.004385 7.65 0.002628
2.15 —0.001554 4.00 —0.023942 5.85 —0.003832 7.7 0.002827
2.2 —0.101008 4.05 —0.016892 5.9 —0.003009 7.75 0.002638
2.25 —0.152195 4.1 —0.009745 5.95 —0.002833 7.8 0.002702
2.3 —0.189574 4.15 —0.002723 6 —0.002206 7.85 0.002747
2.35 —0.213938 4.2 0.003849 6.05 —0.001500 7.9 0.002539
2.4 —0.228382 4.25 0.009620 6.1 —0.000687 7.95 0.002463
2.45 —0.234435 4.3 0.014813 6.15 —0.000636 8 0.002386
2.5 —0.232160 4.35 0.019150 6.2 —0.000856 8.05 0.002338
2.55 —0.224053 4.4 0.023231 6.25 —0.001311 8.1 0.002013
2.6 —0.209804 4.45 0.026716 6.3 —0.001707 8.15 0.001976
2.65 —0.191907 4.5 0.029711 6.35 —0.002199 8.2 0.001765
2.7 —0.171074 4.55 0.032243 6.4 —0.002325 8.25 0.001668
2.75 —0.150465 4.6 0.033630 6.45 —0.002367 8.3 0.001353
2.8 —0.129192 4.65 0.034171 6.5 —0.001990 8.35 0.001162
2.85 —0.108827 4.7 0.033699 6.55 —0.001173 8.4 0.000972
2.9 —0.094394 4.75 0.032001 6.6 —0.000397 8.45 0.000613
2.95 —0.086053 4.8 0.028947 6.65 0.000469 8.5 0.000282
3 —0.081530 4.85 0.025344 6.7 0.001206 8.55 0.000034
3.05 —0.077580 4.9 0.020481 6.75 0.001713 8.6 —0.000053
3.1 —0.074926 4.95 0.015896 6.8 0.002049 8.65 —0.000177
3.15 —0.073313 5 0.011360 6.85 0.001965 8.7 —0.000182
3.2 —0.073026 5.05 0.007204 6.9 0.001731 8.75 —0.000497
3.25 —0.072734 5.1 0.003855 6.95 0.000888 8.8 —0.000248
3.3 —0.073358 5.15 0.001455 7 0.000334 8.85 0.000000

Table 2. Liquid silicon. Parameters of the embedded potential ®(p)

P 0.46785 n 2048
) 0.80 dr, A 0.05
I 0.875 ro, A 9.86
I 1125 oo A 8.855
a, eV —3.2823 e, A 2.05
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Fig. 3. The frequency of occurrence of the CN Z in the liquid silicon model at 1690 K. The radius of the coordination sphere
is 3.05 A — (/) EAM potential, and (2) 1800 K, ab initio method [21].
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The proximity of the silicon potential to the hard-
sphere potential with a step down (Fig. 2) allows us to
verify the formula for the self-diffusion coefficient of the
hard-sphere model [35]

Dygs = (Dy/n) (1= nf1.09)(1+ n* (0.4 - 0.83%)).(5)

where n = (N/V) o3, N is the number of particles in
the volume V, o is the sphere diameter, m is its mass,
Dy = (3/8)0(kgT/mm)!/?. Multiplying the numerator
and denominator of the fraction in the parentheses
by Avogadro's number, we obtain, for 7 = 1733 K,

JOURNAL OF PHYSICAL CHEMISTRY

o =220 A, NV =0.053932 at/A3, n = 0.5743,
Dy=(3/8)2.2 x 1078 x (8.31 x 107 x 1733/m/28.085)'/2 =
=3.33 x 10~* cm?/s, and finally Dys = 2.86 X 10~* cm?/s.
This value agrees well with 2.65 X 10~* obtained by the
MD method and with the value D found by the ab initio
method (2.02:10~* cm?/s for 1800°C [21]).

The self-diffusion mechanism can be refined by
checking whether the Stokes-Einstein equation relating
self-diffusion to viscosity holds for liquid silicon

kT
~ 6mnr,’

(6)
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Table 3. Properties of Si models obtained by the MD method at p ~0.001 GPa, p,;= 0.46785, p, = 0.800, ¢;= 2.0500

d, g/cm? —F, kJ/mol K;, GPa D x 10°, cm?%/s
b
he MD | Exp. [4] | Exp. [5] Rl “Ewp | —Eey[7] | MD [9E”‘§1'] MD ’E‘é’]”g”z’]o

1 2 3 4 5 6 7 8 9o | 10 1 12
0 _ _ _ _ _ — Jasere]| - | - _ _
98 | 2329 | - 2328 | 10153 | — | 35830 | 44246 | — | 9874 | - -
10000 | — - 2320 | - - - #0537 | - | - - -
13000 | — - 2305 | — - - a2 | - | - - -
15000 | — - 2297 | - - - a6l | - | - - -
16900 | — - 2285 | — - - 40525 | — | - - -
1690liq | 2.525 | - — 1085 | — |35590| 35600 | 304 | 282 | 253 -
1700 | 2523 | 2.547 — o2t | — | 35571 | 35565 | — | 374 | 242 -
1733 | 2.517 2515 | 10145 | 0.030 | 35492 | 35475 | 306 | — | 265 -
1750 | 2.516 | 2.534 — 10159 | — | 35460 | 35429 | — | 386 | - -

1800 | 2.508 | 2.520 — o158 | — | 35352 | 35293 | 273 | 394 | 261 | 19-20
1900 | 2.491 | 2.494 — 10038 | — | 35147 | 35021 398 | 26.6 -
2000 | 2.470 | 2.467 — 109999 | — | 34934 | 34749 | 276 | — | 323 -

4 Crystal.

b Standard deviations grow from top to bottom from 0.073 to 0.079.

where 1 is the dynamic viscosity and 7, is the atom
radius. Choosing a value of 6.05 mP [4] for the viscosity
at 1700 K and r, = 1.1 x 108 cm (see above), we obtain
D = 1.9 x 10~* cm?/s, which agrees with the actual
value (1.9 — 2.0) x 10~* (Table 3). The fulfillment
of the Stokes-Einstein equation means that there
is no association sign between the real liquid and,
consequently, the computer model.

Thus, the simulation results show that the properties
of liquid silicon are well described within the framework
of the theory of simple liquids with a potential close to
the hard-sphere potential, with a diameter of spheres
being 2.20 A. This diameter is smaller than the
interatomic distance in the crystal (2.352 A).

When simulating liquid silicon, we can use the
pair contribution to the EAM potential given as a
piecewise continuous polynomial [29, 36] rather than
as a data table. We mark consecutive k intervals on the
abscissa axis » by the division points r; > 0, ry, 73 ...Fj+1.
The coordinate r; should be slightly smaller than the
minimum interatomic distance r,,;,. The first interval is
enclosed between the points r; and r,. The coordinate
r+1 must equal the cut-off radius of the potential r..
The Schommers algorithm yields the values of the
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potential in the intervals from the first to the kth, i.e.,
for r; < r < r4, and it does not work at distances
r < ri. At r > r;, the potential is described by the
expression

k n
0(r), eV = 3 N diy (r = rivie)" H(riuri1)s (7)

i=lm=0

where i is the number of the interval on the distance
axis, dim are the coefficients of the series expansion,
and the Heaviside function H(r;, r;+1) equals 1 in the
interval ri < r < r;4; and zero in other intervals. For
all » = ri, the potential itself and its first derivative
are continuous. The distance r is given in A. The
degree of the polynomials is #. In the case of silicon,
n =17, k = 4 is chosen. The coefficients dim were
obtained in the data approximation program (Table 1)
and are given in Table 4. In this procedure, the
potential values were reliably determined for distances
r>r = 2.15 A, which actually occurred in the silicon
model at 1733 K.

Since the minimum interatomic distances rmin
decrease at high temperatures and pressures, we need to
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Table 4. Expansion coefficients of the pair contribution to the EAM potential of silicon

Interval number i / Interval boundaries r; — r;4, A

i 1/2.10-2.90 2/2.90—-4.20 3/4.20 —6.00 4/6.00 —8.85

ap | —0.97113050520420D—01 | 0.31690669711679D—02 |—0.31873278785497D—02| 0.00000000000000D+00

a; 0.21899378299713D+00 | 0.12773799896240D+00 | 0.34430783707649D—02 | 0.00000000000000D+00

ap | —0.62291081298754D+01 | 0.27154179420195D—01 | 0.84230139063026D—01 | —0.35165857912545D—01
aiz | —0.79015407873123D+02 | 0.43481827129286D+00 | 0.56141844748633D+00 | —0.13246413781381D+00
ay | —0.41364497186011D+03 | 0.13526037867501D+01 | 0.11214214299747D+01 | —0.16534787554672D+00
a;s | —0.10115477873406D+04 | 0.14864527900288D+01 | 0.89595677539435D+00 | —0.93427224218695D—01
ai | —0.11462934613386D+04 | 0.74986992706763D+00 | 0.31125775931700D+00 | —0.24739723425154D—01
ap | —0.48846592560798D+03 | 0.15751335772576D+00 | 0.39450678719440D—01 | —0.24982008692301 D—02

2.5
2 4 {':o
|
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= Poe
17 [} @
|
?
0.5 - !
?
?
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G T
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Fig. 5. PCF of liquid germanium — (1) diffraction data at 1253 K [1], and (2) model with the EAM potential. Residual

Ry = 0.020.

extrapolate the potential to distances smaller than #min.
For silicon, it is assumed that when r < ry,

o(r), eV = ¢(2.15A) +
+(—502.94-r3 + 3292612 — 71839 r + 5223.7),

where r is expressed in A and @(2.15 A) =
= —0.0787061 eV. The transition to writing the potential
in form (7) results in a small loss of accuracy, so that
the residual R, of the function g(r) of silicon at 1733 K
increases from 0.023 to ~0.06.

Simulating germanium. Solid germanium is a

semiconductor. The crystalline lattice is the same as
that of silicon. Diffraction data on the structure of liquid

JOURNAL OF PHYSICAL CHEMISTRY

germanium are given in [1, 33, 37], and at pressures up
to 25 GPa they are given in [38]. The pair correlation
function of germanium at 1253 K is shown in Fig. 5.
The first peak at 2.75 A is quite high and narrow, so
that the first coordination sphere is well defined, with its
radius being 3.60 A. The average coordination number
CN = 8.63 = 1.41. There are data on the density of
solid and liquid germanium up to 1900 K [4, 5, 9,
39], compressibility [40], energy of germanium up to
2000 K [6], viscosity [39, 41], self-diffusion coefficients
[10, 33, 42], properties at high pressures [11, 43, 44],
shock compression [12, 45], etc.

A considerable number of works are devoted to
simulating liquid germanium with SW-type potentials
[14, 15, 33, 46], Tersoff potentials [18], and strong bond
2025
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Table 5. Pair contribution to the potential of liquid germanium. Schommers algorithm at 1253 K. Pair correlation
function [1] with correction [50], residual R, = 0.020

r, A o(r), eV r, A o(r), eV r, A o(r), eV r A o(r), eV
1.5 122.300000 3.35 —0.046844 5.2 0.002804 7.05 0.000684
1.55 101.303000 3.4 —0.047240 5.25 0.001824 7.1 0.000647
1.6 82.303100 3.45 —0.046399 5.3 0.000588 7.15 0.000611
1.65 65.292800 3.5 —0.044678 5.35 —0.001230 7.2 0.000504
1.7 50.263000 3.55 —0.043242 5.4 —0.003176 7.25 0.000431
1.75 37.220100 3.6 —0.042177 5.45 —0.005154 7.3 0.000489
1.8 26.207900 3.65 —0.042683 5.5 —0.006862 7.35 0.000379
1.85 17.311800 3.7 —0.044350 5.55 —0.008321 7.4 0.000296
1.9 10.611500 3.75 —0.046536 5.6 —0.009686 7.45 0.000160
1.95 6.066300 3.8 —0.048615 5.65 —0.010724 7.5 0.000095
2.00 3.391330 3.85 —0.050613 5.7 —0.011583 7.55 —0.000021
2.05 2.031660 3.9 —0.051642 5.75 —0.012469 7.6 0.000084
2.1 1.338040 3.95 —0.051700 5.8 —0.013597 7.65 0.000363
2.15 0.847698 4.00 —0.050500 5.85 —0.014618 7.7 0.000651
2.2 0.407810 4.05 —0.048100 5.9 —0.015344 7.75 0.000941
2.25 0.242786 4.1 —0.044900 5.95 —0.015799 7.8 0.001186
2.3 0.163421 4.15 —0.041400 6 —0.015927 7.85 0.001263
2.35 0.098270 4.2 —0.037700 6.05 —0.015415 7.9 0.001323
2.4 0.045892 4.25 —0.034200 6.1 —0.014349 7.95 0.001494
2.45 0.002577 4.3 —0.030800 6.15 —0.013169 8 0.001467
2.5 —0.033705 4.35 —0.027300 6.2 —0.011718 8.05 0.001491
2.55 —0.063315 4.4 —0.023400 6.25 —0.009987 8.1 0.001490
2.6 —0.086566 4.45 —0.018900 6.3 —0.008416 8.15 0.001489
2.65 —0.103683 4.5 —0.014400 6.35 —0.007194 8.2 0.001543
2.7 —0.114948 4.55 —0.010100 6.4 —0.006185 8.25 0.001735
2.75 —0.120340 4.6 —0.006120 6.45 —0.005239 8.3 0.001765
2.8 —0.120399 4.65 —0.002540 6.5 —0.004468 8.35 0.001859
2.85 —0.115695 4.7 —0.000011 6.55 —0.003829 8.4 0.001948
2.9 —0.107163 4.75 0.001530 6.6 —0.003287 8.45 0.001727
2.95 —0.095625 4.8 0.002330 6.65 —0.002381 8.5 0.001419
3 —0.082393 4.85 0.002780 6.7 —0.001598 8.55 0.001148
3.05 —0.069123 4.9 0.002900 6.75 —0.000845 8.6 0.000767
3.1 —0.057489 4.95 0.002840 6.8 —0.000322 8.65 0.000519
3.15 —0.049449 5 0.002930 6.85 0.000049 8.7 0.000388
3.2 —0.045410 5.05 0.003130 6.9 0.000385 8.75 0.000199
3.25 —0.044939 5.1 0.003420 6.95 0.000652 8.8 0.000043
3.3 —0.045923 5.15 0.003320 7 0.000703 8.85 0.000000

Table 6. Liquid germanium. Parameters of the embedded potential

P 0.57450 n 2048
P 0.80 dr, A 0.05
0 0.875 ro, A 9.86
0, 1.125 reo A 8.96
a —2.7455, eV ¢y, eV 1.5559

JOURNAL OF PHYSICAL CHEMISTRY  Vol.99 No.1 2025



120

BELASHCHENKO

Table 7. Decomposition coefficients of the pair contribution to the EAM potential of germanium

Interval number i / Interval boundaries r; — r,4;, A

3/4.20—6.00

4/6.00—8.95

i 1/2.10-2.80 2/2.80—4.20

ajp |—0.12914022803307D+00 |0.31741657294333D—02

a; | 0.36918279528618D+00 | 0.12768036127090D+00
ap |—0.78049397398888D+01 | —0.12277981456606D+00
ap | —0.10718496961367D+03 | —0.65316546093368D+00
aiy |—0.56677608973579D+03 | —0.15237788383222D+01
a;s |—0.14389761345321D+04 | —0.20467986563964D+01
ajs |—0.17372676812327D+04 | —0.12959413204484D+01
a;; |—0.80443673950751D+03 | —0.29391029780645D+00

—0.34244309645146D—02
0.16339456196874D—02
0.80042188493656D—01
0.55860454460684D+00
0.11235902756831D+01
0.90001319360143D+00
0.31329384464215D+00
0.39797389267772D—01

0.00000000000000D+00

0.00000000000000D-+00
—0.29761810826526D—01
—0.12030635388921D+00
—0.15270893689047D+00
—0.86186740805348D—01
—0.22597590985478 D—01
—0.22478041469157D—02

4.0

354

3.0 4

@(r), eV

1.0 4

0.5 1

-

0.0 5

6 8
rA

Fig. 6. Pair contribution to the EAM potential of germanium, 1253 K.

potentials [44]. A number of potentials are given in the
NIST repository [22]. The MEAM potential was also
applied in [18, 24, 47], the machine learning potential
was applied in [48], and the ab initio method was applied
in [44, 49]. The average CN of liquid germanium (8.63)
is higher than that of silicon, so that the contribution
of the covalent bond is smaller in germanium.
Hence, the EAM potential for liquid germanium may
be quite suitable.

We determined the pair contribution to the EAM
potential for germanium using the Schommers
algorithm, similar to the case of silicon. The PCF of
liquid Ge at 1253 K was calculated using the structure
factor [1] with the least squares method involved [50].

JOURNAL OF PHYSICAL CHEMISTRY

The liquid model of 2048 atoms was constructed in
154 iterations with the final residual R, = 0.020. As we
can see from Fig. 5, the real and model PCF are in good
agreement. The pair contribution to the EAM potential
of liquid Ge is shown in Fig. 6 and given in Table 5. It is
also similar to the hard-sphere one with a step down.
The parameters of the embedded potential are given
in Table 6.

When modeling liquid germanium, one can also use
the pair contribution to the EAM potential given as a
piecewise continuous polynomial (7) rather than a data
table. In the case of germanium, we chose n =7, k = 4.
The coefficients in formula (7) for germanium are given
in Table 7.
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Fig. 7. Coordination numbers of the germanium model at 1253 K. Radius of the sphere of nearest neighbors is 3.6 A.
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Fig. 8. Azimuth angles in the Ge model at 1253 K — (1) radius of the nearest neighbor sphere 3.6 A, and (2) sphere radius 2.8 A.

This potential works in the interval 2.20—8.95 A.
An upward branch should be smoothly added to it at
r<220A.

Using the EAM potential, we constructed a series
of liquid germanium models consisting of 2048 atoms
in a basic cube with periodic boundary conditions,
at temperatures 1200—1800 K, in the NVT and NpT
modes. The pair correlation function g(r) at 1253 K is
shown in Fig. 5 in excellent agreement with diffraction
data [1].

Figure 7 shows the distribution of CN of liquid
germanium atoms at 1253 K calculated with the
radius of the nearest-neighbor sphere of 3.20 A. It has
a form characteristic of simple metals and passes
through the maximum when Z = 6. The average

JOURNAL OF PHYSICAL CHEMISTRY  Vol. 99

No. 1

value of Z = 6.17 £ 1.35. Choosing the radius of
the sphere of nearest neighbors to be 3.60 A, we
have Z = 8.63 = 1.41. As in the case of silicon,
predominantly tetrahedral packing is not observed. The
distribution of CN in germanium is very similar to the
case of silicon.

The distribution of azimuth angles also looks similar
to silicon (Fig. 8), but with the maximum shifted
from the value 60° in silicon to the value 56°. For a
smaller sphere radius of 2.8 A, the first maximum is at
the angle 65°. In the ab initio method [51], the angle
distribution is similar, but at the radius 2.8 A, the
first maximum at 80° is much lower than the second
maximum (at 100°). The tetrahedral angle at 109° is still
quite far away.
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Table 8. Properties of Ge models constructed by the MD method at p ~0.001 GPa

d, g/cm3 —E, kJ/mol K;, GPa D x 10°, cm?/s
T,K <p>b
MD  |Exp [52]| Exp [5]|Exp [39] —Enp |~Ewp [6]] MD |Exp [31]] MD [Exp [10]
1 2 3 4 5 6 8 9 10 11 12 13
0 - - - - - — 369.04 - - - -
2982 - — 5.372 - — 236.01 | 364.40 — — — —
613 | - ~ 5333 - - . - - - - -
1153 — — 5.284 — — — — — — — —
1200 5.542 — — 5.58 — 277.44 | 341.05 — — 10.1 13.0
12104y, — — — _ — 340.76 | — - - .
1210.4y4| 5.526 - - - 1.00741 303.67 | 303.73 - - - -
1253 5.510 5.47 5.49 5.556 |1.00467| 0.019 | 302.75| 302.72 | 30.8 31.5 11.9 13.9
1300 5.485 5.45 5.46 5.535 [1.00070| 0.021 | 301.54 | 301.26 — 31.3 12.5 14.6
1400 5.436 5.41 543 5.487 (0.99540 299.08 | 298.50 - 30.4 14.0 16.2
1500 5.387 5.35 — 5.445 10.98453 296.82 | 295.74 | 28.2 29.7 15.8 17.6
1600 5.342 5.30 — 5.400 [0.97576 294.46 | 292.98 - - 17.3 19.0
1700 5.295 5.26 — 5.352 10.96786 292.17 | 290.02 — — 18.6 | 22 [51]
1800 5.236 5.22 — 5.32 10.95652 289.72 | 287.49 - - 19.5 -
1900 5.178 5.16 - — 0.94962 287.37 | 284.70 — - — —
2000 5.135 — — — 0.94245 285.18 | 281.94 18.7 — — 23 [51]

The behavior of the structure of liquid Si and Ge as
compared to what we see for the SW and Ter potentials
indicates the weakening of the covalent bond when the
elements are shifted from top to bottom in the Periodic
System, from silicon to germanium.

The results of calculations of liquid germanium
properties in the NpT mode at temperatures up to
2000 K are given in Table 8. Published data on the
density show a significant scatter. The best agreement
is obtained with the data of [5, 52]. There is also good
agreement with the experiment on the PCF form at
1253 K (the small residual R, = 0.020), as well as with
ab initio PCF at 2000 K [51]. The discrepancy with the
experiment in terms of model energies is only 3 kJ/mol
at 2000 K (electron energies not taken into account).
The heat capacity of liquid germanium is close to
23 J/(mol K), i.e., to the classical value 3R. The real
heat capacity of liquid germanium is slightly higher,
27.6 J/mol/K.

The speed of sound in liquid germanium was measured
in [31] at temperatures 1215—1443 K. At 1253 K, the
adiabatic compressibility is Bs = 2.52 x 10~ m?/N, so
the adiabatic compressive modulus K, = 1/8s = 39.7 GPa.
According to MD data, the heat capacity ratio

JOURNAL OF PHYSICAL CHEMISTRY

C,/C, = 1.26. Accordingly, the isothermal modulus is
Ky = KC,/C, = 31.5 GPa. For ¢ = 1.5559, the value
of the model modulus found from the pressure-volume
relationship is K7 = 30.8 GPa. When heated from 1690
to 2000 K, the modulus of the model K7 decreases
to 18.7 GPa.

The closeness of the liquid germanium potential to
the hard-sphere potential (see Fig. 6) allows us to verify
formula (5) for the self-diffusion coefficient. Taking the
diameter of the hard sphere o = 2.45 A, we find for the
model at 1253 K N/V = 0.045719 at/A3, n = 0.6723,
Dy=(3/8) x 2.45 % 1078 x (8.31 x 107 x 1253/71/72.59)1/> =
= 1.9632 x 10~* cm?/s, and finally Dyyg = 1.13 X 10~* cm?/s.
This value agrees well with 1.19 x 10~* obtained by the
MD method. Calculations by the ab initio method yield
at 1250 K a close value D = 0.95 x 10~* cm?/s [49].
The pseudopotential calculation yields 1.27 x 10~4[53].
The results of direct measurements of self-diffusion
in liquid germanium are close to those given above
(see Table 8).

As a result, we have that the properties of liquid
germanium are well described by the EAM potential,
which is close to the hard-sphere potential with
a step down.
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DISCUSSION OF RESULTS 3.

Previously, it was shown by the ab initio method that 4
at high pressures a chemical bond between two atoms
in liquid silicon arises spontaneously due to a random
approach of these atoms to a distance less than 2.5 A 5
[21]. In this work, we showed that the behavior of
liquid silicon and germanium models is well described
by EAM potentials with almost complete disappearance 6.
of directionality of the bond. For the coordination
numbers 6 and higher, the locally isotropic short-
range order turns out to be more favorable. As a result, 7.
hybridization of electronic states of the sp? type in liquid
silicon and germanium is not realized. Many properties 8.
of liquid silicon and germanium are consistent with
the concept of isotropic interaction. Hence, potentials 9.
generating directionality of the bond in crystals
(SW, Ter, etc.) should be of little use for simulating 10.
liquid silicon and germanium at densities close to
ordinary ones. This explains the relatively low accuracy 11.
of the potentials proposed to describe simultaneously
the solid and liquid phases of silicon and germanium.

We apply this reasoning, for instance, for carbon 12.
located above silicon in the Periodic System. When
moving up the 4th group of elements, the ionization
potentials of atoms grow (from 7.90 in germanium to 13.
8.15 eV in silicon and 11.3 in carbon) and, accordingly,
the limits of temperatures and pressures increase, at 14.
which gradual transitions from the directional bond
in carbon (of the sp, sp? or sp3 type) to the isotropic 15.
structure of liquid carbon should occur as the density
grows. Such a transition is observed when simulating
carbon by the ab initio method at 9000 K and densities ¢,
above 5.8 g/cm? [54]. Staying within the framework
of classical molecular dynamics, one should expect {7
a smooth change of the interparticle potential at
compression from the oprion of directional bond 18
(SW type) to the isotropic potential. In the transition '
region, it can be realized, for instance, as a sum of 19
these two potentials with weights depending on the )
liquid density. 20

Roughly, when the density decreases by a factor of ’
2—3 (due to heating), the mentioned transition can 91
occur in silicon and germanium in the opposite ’
direction, viz. from an isotropic liquid near the melting
point to a liquid with the directional bond. This 22.
prediction can be easily verified by the ab initio method. ’;
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