ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УЛК 544.723.21

УДАЛЕНИЕ ФОСФАТОВ ИЗ ВОДНЫХ РАСТВОРОВ С ПОМОЩЬЮ СТАТИЧЕСКОЙ СОРБЦИИ НА ЗОЛОШЛАКОВОМ СОРБЕНТЕ. АНАЛИЗ КОЭФФИЦИЕНТОВ РАСПРЕДЕЛЕНИЯ НА ОСНОВЕ ИЗОТЕРМ АДСОРБЦИИ

© 2024 г. Т. Г. Короткова^{а, *}, А. М. Заколюкина^а, С. А. Бушумов^а

^а Кубанский государственный технологический университет, 350072, Краснодар, Россия

*e-mail: korotkova1964@mail.ru
Поступила в редакцию 28.11.2023 г.
После доработки 15.01.2024 г.
Принята к публикации 17.02.2024 г.

Проведены экспериментальные исследования статической сорбции в системе фосфаты – сорбент при дозах сорбента 1, 2 и 5 г в диапазоне начальных концентраций фосфатов в растворе от 2 до 5000 мг/дм³. В качестве сорбента исследован прокаленный сорбент на основе золошлаковых отходов теплоэнергетики. Исследования проведены на частоте врашения магнитной мешалки 200 об./мин при водородном показателе рН 7 и времени сорбции 120 мин, найденным в результате оптимизации. Температура при проведении экспериментальных исследований составляла $25\pm 2^{\circ}$ С. Выявлено наличие максимума коэффициента распределения K_d и эффективности очистки. Полученные данные обработаны двухпараметрическими изотермами адсорбции Ленгмюра, Фрейндлиха, Еловича, Темкина и Дубинина-Радушкевича. Методом линеаризации определены константы изотерм адсорбции. Приведено сравнение расчетных и экспериментальных данных. Выполнен теоретический анализ изотерм адсорбции для описания зависимости коэффициента распределения K_d от начальной C_0 и равновесной C_e концентраций адсорбтива в растворе. Для изотерм Ленгмюра, Фрейндлиха и Еловича функции $K_d = f(C_e)$ и $K_d = f(C_0)$ являются монотонно убывающими во всем диапазоне изменения адсорбтива в растворе. Для изотерм Темкина и Дубинина—Радушкевича производная функции dK_d/dC_e меняет свой знак с плюса на минус, что является достаточным условием существования максимума функции. Функции $K_d = f(C_e)$ и $K_d = f(C_0)$ имеют максимум при небольших концентрациях C_e . Качественное описание экспериментальных данных максимума коэффициента распределения K_d получено с использованием изотерм Темкина и Дубинина-Радушкевича. Адекватное количественное описание экспериментальных данных максимума функции $K_d = f(C_0)$ получено с использованием изотермы Темкина при дозе сорбента 1 г, а при дозе сорбента 2 г — по изотерме Дубинина—Радушкевича. Изотермы Темкина и Дубинина-Радушкевича применены для описания коэффициента распределения $K_d = f(C_e)$ в системе ионы аммония — сорбент. Выявлен максимум функции при малых концентрациях ионов аммония в растворе, сравнение расчетных и экспериментальных данных показало качественное согласование теории и эксперимента.

Ключевые слова: коэффициент распределения, фосфаты, ионы аммония, прокаленный сорбент, золошлаковые отходы теплоэнергетики, эффективность очистки

DOI: 10.31857/S0044453724100153, EDN: EAQQAM

ВВЕДЕНИЕ

Вопросу удаления ионов аммония и фосфатов из водных растворов, в том числе сточных вод, посвящено большое количество работ, направленных на исследование сорбционной емкости адсорбентов и их возможном применении в производственных масштабах [1—3]. Наибольшей поглотительной способностью обладают природные цеолиты и модифицированные материалы.

Динамическая емкость природного сорбента (дисперсного кремнезема — опоки) по иону аммония составляет 2.37—5.34 мг/г при скорости потока 1.76—0.44 см/мин, соответственно [4], сорбционная емкость: цеолит 9.5—13.7 мг/г, цеолитовый клиноптилолит 12.29 мг/г, цеолит натуральный китайский 9.41 мг/г, углеродные нанотрубки 17.05 мг/г, аэробные гранулы 24.5 мг/г [1], натуральные минералы (бентонит) 4.22—4.92 мг/г [5]. Сорбционная

емкость по фосфатам: цеолит 0.69 мг/г, биоуголь 3.6 мг/г, композит цеолит-биоуголь 2.41 мг/г [6], эфиопская рифтовая пемза 0.2779 мг/г [7].

В связи с ценностью природных адсорбентов в настоящее время для очистки сточных вод широко исследуются отходы производства в нативном и модифицированном видах: активированный уголь, полученный из кокосовой скорлупы [8], активированный уголь, полученный из отработанных шин (покрышек) методом пиролиза [9], стальной шлак электродуговой печи с высоким содержанием кальция [10]. Большое внимание уделено золе уноса и золошлаку теплоэнергетики, занимающими значительные площади на золоотвалах [11—13].

Нами разработан сорбент на основе золошлаковых отходов Новочеркасской ГРЭС, физико-химические свойства которого приведены в [14]. Сорбент получен путем прокаливания в течение 30 мин при температуре 600°С (прокаленный сорбент) и апробирован на удалении нефтепродуктов [15] и ионов аммония из водных растворов [16, 17]. Максимальная величина адсорбции составила 1.1251 мг/г при дозе сорбента 1 г [16] и 1.0864 мг/г при дозе сорбента 2 г [17]. Было обнаружено, что с ростом начальной концентрации ионов аммония C_0 коэффициент распределения K_d имеет максимум при малых концентрациях. Аналогичную зависимость имеет и эффективность очистки E в силу пропорциональности этих величин. Максимум эффективности очистки получен нами при удалении сорбентом нефтепродуктов [15].

Данная закономерность по эффективности очистки получена также в работах [18, 19], где приведены исследования при малых концентрациях ионов аммония [18] и аммиачного азота в растворе [19]. В работе [12] выявлено, что при увеличении начальной концентрации с 500 до 2000 мг/дм³ эффективность удаления фосфора синтетическим цеолитом возрастала до 57.6%, а при изменении начальной концентрации с 2000 до 8000 мг/дм 3 она существенно снижалась. Исследователи объяснили это тем, что синтетический цеолит имел больше вакантных адсорбционных активных центров при более низкой исходной концентрации; однако если исходная концентрация фосфора в сточных водах превышала определенное значение, то большая часть активных участков оказывалась занятой, что приводило к снижению эффективности удаления.

Изменение эффективности удаления фосфатов и ионов аммония в зависимости от их начальной концентрации в исходном растворе обнаружено в работе [20], где большие различия наблюдались при низких концентрациях. Эффективность удаления снижалась, когда концентрация фосфатов превышала 200 мг/дм³, а ионов аммония 10 мг/дм³. Исследователи провели аналогию на похожие закономерности для фосфатов и ионов аммония.

Коэффициент распределения K_d (константа фазового равновесия) представляет собой согласно ГОСТ 32630—2014 отношение равновесной величины адсорбции A_e к равновесной концентрации адсорбтива в растворе после сорбции C_e и является функцией температуры, давления и состава равновесных фаз.

$$K_d = \frac{A_e}{C_a}. (1)$$

Исследованиям K_d при адсорбции посвящено большое количество работ [21—23] в основном в виде зависимости $ln(K_d) = f(1/T)$, где T — температура процесса сорбции в К. В работе [21] K_d стронция и цезия определяли для системы песок раствор. Результаты исследований сравнивали с K_d , являющимся параметром идентификации, найденным при обработке экспериментальных данных колоночной сорбции. В работе [23] для четырех значений температур (303, 313, 323, 333 К) исследован K_d для удаления 4-пиколина из сточной воды с использованием природной золы уноса при рН 6.22; $C_0 = 100 \text{ мг/дм}^3$ и $m = 4 \text{ г/дм}^3$. Обзорная работа [22] охватывает результаты исследований, связанные с извлечением поллютантов геоматериалами (почвами и горными породами), где взаимодействие поллютантов с геоматериалами количественно оценено с помощью коэффициента распределения K_d . Помимо специфических свойств геоматериалов K_d зависит от значения pH порового раствора, температуры окружающей среды, типа и содержания веществ, присутствия микроорганизмов и т.д. В работе отмечено, что K_d варьируется в широких пределах, и методы, принятые для его определения, имеют свои ограничения и недостатки. Таким образом, исследователи критически оценивают эти методы, с тем чтобы они могли быть изменены или заменены новыми, которые могут быть легко внедрены для быстрого получения надежных результатов. С учетом вышеизложенного в своей работе авторы подчеркнули важность и роль параметров, влияющих на определение K_d .

В литературных источниках приводятся экспериментальные данные в системе ионы аммония — сорбент по исследованию K_d от температуры T при фиксированных значениях водородного показателя рH, начальной концентрации адсорбтива в растворе C_0 , дозе сорбента m и объеме исходного раствора V [24, 25].

Для описания фазового равновесия при статической сорбции в системе извлекаемый компонент — адсорбент разработаны термодинамически обоснованные и полуэмпирические изотермы адсорбции в виде зависимости между равновесной величиной адсорбции A_e (сорбционной емкостью) и равновесной концентрацией адсорбтива в растворе после сорбции C_e . Широкое применение

получили изотермы Ленгмюра, Фрейндлиха, Темкина, Еловича и Дубинина—Радушкевича [18, 25—28]. Определение параметров изотермы адсорбции проводят методом линеаризации [28, 29]. В большинстве работ делается вывод о характере протекания и механизме процесса адсорбции на основании положения экспериментальных точек относительно расчетной кривой изотермы адсорбции.

Авторам не удалось обнаружить исследования коэффициента распределения K_d на основе анализа изотерм адсорбции в зависимости от дозы сорбента m, начальной C_0 и равновесной C_e концентрации компонента в растворе в широком диапазоне изменения концентраций адсорбтива в растворе.

В данной статье приведены результаты экспериментальных исследований фазового равновесия статической сорбции в системе фосфаты — сорбент при дозах сорбента 1, 2 и 5 г в диапазоне начальных концентраций фосфатов в растворе от 2 до $5000~\rm Mr/дm^3$ и выполнен анализ изотерм адсорбции на возможность предсказания кривых зависимости коэффициента распределения K_d и эффективности извлечения E как функции от C_0 и C_e . В качестве изотерм рассмотрены изотермы Ленгмюра, Фрейндлиха, Темкина, Еловича и Дубинина—Радушкевича.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фазовое равновесие в системе фосфаты — прокаленный сорбент

Были приготовлены серии растворов с содержанием фосфатов 2, 5, 10, 20, 50, 100, 200, 300, 500, 1000, 2000 и 5000 мг/дм³: при дозе сорбента 1 г в диапазоне начальной концентрации от 2 до 1000 мг/дм³, при дозе сорбента 2 г — от 2 до 2000 мг/дм³ и при дозе сорбента 5 г — от 2 до 5000 мг/дм³. Объем исследуемого модельного раствора 50 см³. Оптическую плотность растворов определяли в аккредитованной в национальной системе аккредитации аналитической лаборатории ООО "Аналитическая лаборатория Кубани" на спектрофотометре ПЭ-5300ВИ (Россия). По оптической плотности D рассчитывали содержание фосфатов C, мг/дм³, по предварительно установленной градуировочной зависимости

$$C = \frac{D + 0.00048}{0.72184}. (2)$$

Концентрацию фосфатов в растворах X, мг/дм³, определяли по выражению·

$$X = \frac{C \cdot 50 \cdot p}{V} \tag{3}$$

где C — содержание фосфатов, найденное по градуировочной характеристике, мг/дм³; V — объем аликвоты раствора, отобранный на анализ, см³;

50 — объем спектрофотометрируемого раствора, см³; p — коэффициент разбавления пробы.

По результатам оптимизации приняты следующие параметры статической сорбции: частота вращения магнитной мешалки ММ 2A (Чехия) 200 об./мин, водородный показатель рН 7, время сорбции 120 мин. Температура при проведении экспериментальных исследований составляла 25±2°С.

Результаты исследований приведены в табл. 1.

Равновесная величина адсорбции (сорбционная емкость) A_e , мг/г, прокаленного сорбента по отношению к фосфатам вычислена с учетом порового объема сорбента

$$A_e = \frac{C_0 V - [C_e (V - v_p m)]}{m} = \frac{(C_0 - C_e)V}{m} + C_e v_p. \quad (4)$$

где V- объем исходного раствора (V=0.05 дм³); v_p- удельный поровый объем прокаленного сорбента ($v_p=0.506\times 10^{-3}$ дм³/г) [14]; m- масса сорбента, г.

Эффективность извлечения фосфатов E,%, определена как отношение количества фосфатов, поглощенных чистым прокаленным сорбентом, к количеству фосфатов в исходном растворе, выраженное в процентах

$$E = \frac{C_0 V - (V - v_p m) C_e}{C_0 V} \cdot 100 =$$

$$= \left(\frac{C_0 - C_e}{C_0} + \frac{v_p m C_e}{C_0 V}\right) \cdot 100.$$
(5)

Анализ экспериментальных данных (табл. 1) по-казывает, что при дозах прокаленного сорбента 1, 2 и 5 г коэффициент распределения K_d и эффективность извлечения E имеют максимум при изменении концентрации фосфатов от 2 до $1000~{\rm Mr/дm^3}$, которые сдвигаются в сторону больших концентраций с увеличением дозы сорбента. При дозе сорбента 1 г при $C_0=10~{\rm Mr/дm^3}$, $K_d=2.0111~{\rm дm^3/r}$, а E=97.601%. При дозе сорбента 5 г при $C_0=300~{\rm Mr/дm^3}$, $K_d=16.5295~{\rm дm^3/r}$, а E=99.943%.

Выполним анализ двухпараметрических изотерм адсорбции Ленгмюра, Фрейндлиха, Еловича, Темкина и Дубинина—Радушкевича и проведем обработку экспериментальных данных фазового равновесия статической сорбции.

Теоретический анализ двухпараметрических изотерм адсорбции

Изотерма Ленгмюра. Изотерма Ленгмюра имеет вид

$$A_e = A_{\text{max}} \frac{k_L C_e}{1 + k_L C_e},\tag{6}$$

Таблица 1. Экспериментальные исследования фазового равновесия в системе фосфаты — прокаленный сорбент

C_0 , мг/дм ³	<i>m</i> , г	D	<i>V</i> , см ³	p	C_e , мг/дм ³	A_e , мг/г	K_d , дм ³ /г	E, %
			До	за сорбента	1 г			
2	1.0004	0.052	25	1	0.145	0.0928	0.6380	92.803
5	1.0009	0.067	25	1	0.187	0.2405	1.2865	96.29
10	1.0013	0.052	15	1	0.242	0.4874	2.0111	97.60
20	0.9980	0.040	5	1	0.561	0.9742	1.7372	97.22
50	0.9983	0.081	0.5	1	11.288	1.9446	0.1723	77.65
100	1.0010	0.112	0.2	1	38.956	3.0689	0.0788	61.43
200	1.0022	0.085	0.05	1	118.420	4.1300	0.0349	41.39
300	1.0012	0.077	0.025	1	214.674	4.3698	0.0204	29.16
500	1.0009	0.059	1	100	412.003	4.6044	0.0112	18.43
1000	0.9997	0.131	1	100	910.728	4.9258	0.0054	9.849
			До	за сорбента	2 г			
2	2.0010	0.041	40	1	0.072	0.0482	0.6713	96.48
5	1.9994	0.040	25	1	0.112	0.1223	1.0903	97.80
10	2.0020	0.048	25	1	0.134	0.2465	1.8349	98.68
20	2.0008	0.038	15	1	0.178	0.4954	2.7882	99.13
50	1.9990	0.041	10	1	0.287	1.2436	4.3282	99.43
100	2.0010	0.046	5	1	0.644	2.4830	3.8561	99.36
200	1.9987	0.054	0.1	1	37.737	4.0783	0.1081	81.513
300	2.0015	0.072	0.5	10	100.410	5.0368	0.0502	67.20
500	2.0007	0.04	1	100	280.395	5.6301	0.0201	45.05
1000	2.0008	0.055	5	1000	768.591	6.1718	0.0080	24.69
2000	2.0015	0.254	1	100	1762.717	6.8196	0.0039	13.64
			До	за сорбента	5 г			
2	5.0020	0.036	40	1	0.063	0.0194	0.3070	97.00
5	4.9987	0.037	25	1	0.104	0.0490	0.4721	98.02
10	5.0013	0.037	25	1	0.104	0.0990	0.9532	99.01
20	4.9991	0.038	25	1	0.107	0.1990	1.8667	99.49
50	4.9987	0.044	25	1	0.123	0.4990	4.0487	99.76
100	4.9991	0.047	25	1	0.132	0.9989	7.5934	99.87
200	4.9999	0.055	25	1	0.154	1.9986	13.0016	99.92
300	4.9990	0.065	25	1	0.181	2.9989	16.5295	99.94
500	4.9991	0.048	0.5	10	67.162	4.3631	0.0650	87.24
1000	4.9986	0.056	1	100	391.222	6.2874	0.0161	62.85
2000	4.9999	0.097	0.5	100	1350.438	7.1791	0.0053	35.89
5000	5.0001	0.127	2	1000	4415.106	8.0829	0.0018	16.16

Обозначения: C_0 — начальная концентрация фосфатов в растворе, m — масса сорбента, D — оптическая плотность раствора, V — аликвота раствора, взятая на анализ, p — коэффициент разбавления пробы, C_e — равновесная концентрация фосфатов в растворе после сорбции, A_e — равновесная величина адсорбции, K_d — коэффициент распределения, E — эффективность извлечения фосфатов.

где A_e , C_e — равновесные значения величины адсорбции и концентрации адсорбтива в растворе после сорбции, мг/г и мг/дм³ соответственно; $A_{\rm max}$ — максимальное значение величины адсорбции, мг/г; k_L — константа Ленгмюра, дм³/мг.

Используют пять выражений линеаризации изотермы Ленгмюра [28]. Широкое распространение получило выражение вида

$$\frac{C_e}{A_e} = \frac{C_e}{A_{\text{max}}} + \frac{1}{k_L A_{\text{max}}}.$$
 (7)

Линейная зависимость строится в координатах

$$\frac{C_e}{A_e} = f(C_e). \tag{8}$$

Аппроксимация экспериментальных данных прямой (7) позволяет определить A_{\max} и k_L . Если экспериментальные значения располагаются близко к прямой и аппроксимация имеет высокий коэффициент детерминации R^2 , то можно сделать вывод о гомогенном мономолекулярном процессе адсорбции адсорбата на активных центрах сорбента, обладающих равной энергией независимо от их расположения.

Коэффициент распределения K_{dL} , дм³/г, связан с равновесными значениями величины адсорбции (сорбционной емкостью) и концентрацией адсорбтива в растворе после сорбции соотношением

$$K_{dL} = \frac{A_e}{C_o}. (9)$$

Тогда с учетом уравнения (6) получим

$$K_{dL} = A_{\text{max}} \frac{k_L}{1 + k_L C_e}.$$
 (10)

Анализ уравнения (10) показывает, что с возрастанием C_e , а, следовательно, и C_0 в силу их пропорциональности, величина K_{dL} является монотонно убывающей функцией.

Изотерма Фрейндлиха. Изотерма Фрейндлиха имеет вид

$$A_e = k_F C_e^{1/n}, (11)$$

где k_F — константа Фрейндлиха, дм³/г; 1/n — коэффициент неоднородности.

Линеаризация изотермы Фрейндлиха записывается выражением вида

$$\ln A_e = \ln k_F + \frac{1}{n} \ln C_e. \tag{12}$$

Линейная зависимость строится в координатах

$$\ln A_a = f(\ln C_a). \tag{13}$$

Аппроксимация экспериментальных данных прямой (12) позволяет определить k_F и n. При высоком коэффициенте детерминации R^2 можно предположить о характере многослойной адсорбции на гетерогенной поверхности с центрами адсорбции, характеризующимися разной энергией, имеющей экспоненциальное распределение.

Уравнение для расчета коэффициента распределения K_{dF} , дм 3 /г

$$K_{dF} = \frac{k_F}{C_o^{(n-1)/n}}. (14)$$

Анализ уравнения (14) показывает, что с возрастанием C_e величина K_{dF} также является монотонно убывающей функцией. Следовательно функции $K_{dF} = f(C_e)$ и $K_{dF} = f(C_0)$ — монотонно убывающие.

Изотерма Еловича. Изотерма Еловича имеет вид

$$\frac{A_e}{A_{mE}} = k_E C_e \exp\left(-\frac{A_e}{A_{mE}}\right),\tag{15}$$

где A_{mE} — максимальная сорбционная емкость, мг/г; k_E — константа Еловича, дм³/мг.

Линеаризация изотермы Еловича

$$\ln \frac{A_e}{C_e} = \ln \left(k_E A_{mE} \right) - \frac{A_e}{A_{mE}}.$$
 (16)

Линейная зависимость строится в координатах

$$\ln \frac{A_e}{C_e} = f(A_e).$$
(17)

Аппроксимация экспериментальных данных прямой (16) позволяет определить A_{mE} и k_E . Вычисление A_e проводится одним из итерационных методов путем задания начального приближения по A_e с последующим уточнением до достижения сходимости между заданным и расчетным значением A_e с некоторой точностью. При описании с высокой точностью экспериментальных данных изотермой Еловича судят о многослойной адсорбции, сопровождающейся экспоненциальным ростом центров адсорбции по мере протекания процесса адсорбции.

Уравнение для расчета коэффициента распределения K_{dE} , дм 3 /г, не содержит C_e

$$K_{dE} = A_{mE} k_E \exp\left(-\frac{A_e}{A_{mE}}\right). \tag{18}$$

Величина A_e пропорциональна значениям C_0 и C_e . Анализ уравнения (18) показывает, что

с ростом A_e функция является монотонно убывающей. Следовательно, функции $K_{dE}=f(C_e)$ и $K_{dE}=f(C_0)$ — также монотонно убывающие.

102

Изотерма Темкина. Изотерма Темкина имеет вил

$$A_e = \frac{RT}{B_T} \ln(k_T C_e), \tag{19}$$

где B_T — константа, характеризующая теплоту адсорбции, Дж г/(моль мг); k_T — константа Темкина, соответствующая максимальной энергии связывания, дм³/мг; R = 8.314 — универсальная газовая постоянная, Дж/(моль K); T — температура, K.

Линеаризация изотермы Темкина

$$A_e = \frac{RT}{B_T} \ln k_T + \frac{RT}{B_T} \ln C_e. \tag{20}$$

Линейная зависимость строится в координатах

$$A_{\rho} = f(\ln C_{\rho}). \tag{21}$$

Изотерма Темкина, как и Ленгмюра, характеризует мономолекулярный процесс адсорбции адсорбата на активных центрах сорбента, обладающих равной энергией. Отличительной особенностью является учет энергетического взаимодействия между центрами адсорбции и поглощенным компонентом (адсорбатом).

Уравнение для расчета коэффициента распределения K_{dT} , дм 3 /г

$$K_{dT} = \frac{RT}{C_e B_T} \ln(k_T C_e). \tag{22}$$

В уравнении (22) величина C_e находится в знаменателе и в числителе под знаком логарифма. Наличие коэффициентов k_T и B_T/RT при C_e не дает возможности судить о монотонности данной функции. Оценим функцию (22) на наличие экстремума. Обозначим K_{dT} через y, C_e через x, RT/B_T через a и k_T через b. Тогда уравнение (22) примет вид

$$y = -\frac{a}{x} \ln(bx). \tag{23}$$

Для нахождения экстремума найдем производную функции (23) и приравняем ее к нулю.

$$\frac{dy}{dx} = \frac{a\left[1 - \ln\left(bx\right)\right]}{x^2} = 0. \tag{24}$$

Величина a > 0. Тогда при x > 0 производная функции равна нулю при $\ln(bx) = 1$.

Получим

$$\frac{dy}{dx} = 0 \quad x_0 = \frac{e}{h}.$$
 (25)

Если

$$x < x_0$$
, to $\ln(bx) < 1$, (26)

следовательно, dy/dx > 0.

Если

$$x > x_0$$
, to $\ln(bx) > 1$, (27)

следовательно, dy/dx < 0.

Найдем значение выражения $1 - \ln(bx)$ при двух значениях переменной x, меньше и больше x_0 : x = e/(2b) и x = 2e/b.

Получим

$$1 - \ln\left(b\frac{e}{2b}\right) = 0.69315 > 0,$$

$$1 - \ln\left(b\frac{2e}{b}\right) = -0.69315 < 0.$$

Таким образом, при возрастании величины x производная функции меняет свой знак с положительного на отрицательный, что является достаточным условием существования максимума функции.

Изотерма Дубинина—Радушкевича. Изотерма Дубинина—Радушкевича имеет вид

$$A_e = A_m \exp(-k_{DR} \varepsilon^2), \tag{28}$$

$$\varepsilon = RT \ln \left(1 + \frac{1}{C_e} \right),\,$$

где A_m — максимальное значение величины адсорбции, мг/г; k_{DR} — константа Дубинина—Радушкевича, моль 2 /кДж 2 ; ε — потенциал Поляни, кДж/моль; R — универсальная газовая постоянная $R=8.314\times10^{-3}$ кДж/(моль K); T — температура, K.

Линеаризация изотермы Дубинина-Радушкевича

$$\ln A_e = \ln A_m - k_{DR} \varepsilon^2. \tag{29}$$

Линейная зависимость строится в координатах

$$ln A_a = f(\varepsilon^2).$$
(30)

Аппроксимация экспериментальных данных прямой (29) позволяет определить A_m и k_{DR} . Изотерму Дубинина—Радушкевича применяют для оценки физической либо химической адсорбции.

Уравнение для расчета коэффициента распределения K_{dDR} , дм 3 /г, примет вид

Значение Изотерма адсорбции Единица измерения Доза сорбента Параметр 1г 2г 5г 4.9358 6.7705 8.0515 $M\Gamma/\Gamma$ $A_{\rm max}$ Ленгмюр $дм^3/м\Gamma$ k_L 0.0718 0.0546 0.0322 R^2 0.9984 0.9976 0.9983 Дж г/(моль мг) B_T 4413.989 3937.028 3687.961 Темкин $дм^3/м\Gamma$ 7.9959 26.4618 28.5864 k_T R^2 0.9849 0.9791 0.9342 3.5434 5.2814 8.8560 $M\Gamma/\Gamma$ A_m Дубинин-Радушкевич моль 2 /кДж 2 0.1436 0.1166 0.1196 k_{DR} R^2 0.9908 0.9508 0.8325 0.9188 1.1322 1.2502 $M\Gamma/\Gamma$ A_{mE} $дм^3/м\Gamma$ 2.939 Елович 2.154 2.850 k_E R^2 0.9329 0.8223 0.6135 2.5981 2.7473 n 2.6302 $дм^3/\Gamma$ Фрейндлих k_F 0.5675 0.6672 0.6307 0.8676 0.7552 0.5715

Таблица 2. Параметры изотерм адсорбции

Примечание: R^2 — коэффициент детерминации.

$$K_{dDR} = \frac{A_m}{C_e} \exp\left(-k_{DR} \left[RT \ln\left(1 + \frac{1}{C_e}\right)\right]^2\right). \quad (31)$$

По уравнению (31) сложно предсказать характер изменения данной функции. Оценим функцию (31) на наличие экстремума. Обозначим K_{dDR} через $y,\ C_e$ через $x,\ A_m$ через $a,\ k_{DR}$ через b и RT через c. Тогда уравнение (31) примет вид

$$y = \frac{a}{x} \exp\left(-b\left[c\ln\left(1 + \frac{1}{x}\right)\right]^2\right). \tag{32}$$

Для нахождения экстремума найдем производную функции (32) и приравняем ее к нулю.

$$\frac{dy}{dx} = \frac{a\left(2bc^2 \ln\left(1 + \frac{1}{x}\right) - x - 1\right)}{e^{bc^2 \ln\left(\frac{x+1}{x}\right)} \cdot x^2(x+1)} = 0.$$
 (33)

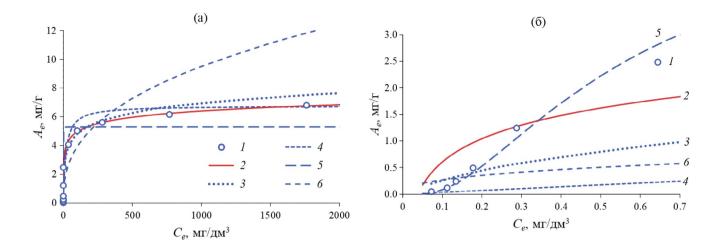
Так как b > 0, c > 0 и в знаменателе под знаком логарифма выражения (33) число больше 1, то знаменатель при x > 0 является положительным числом. Приравняем к нулю числитель и учтем, что a > 0. Обозначим $2bc^2$ через d. Тогда

$$d\ln\left(1 + \frac{1}{x}\right) - x - 1 = 0. \tag{34}$$

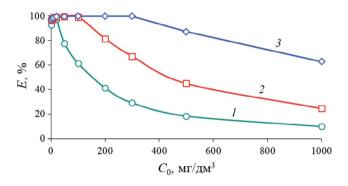
Уравнение (34) не имеет аналитического решения. Корень функции может быть найден одним из численных методов. Для выявления характера функции найдем величину d при двух значениях параметра x: при x = 1/e и x = e.

$$d \ln\left(1 + \frac{1}{1/e}\right) - \frac{1}{e} - 1 = 0.$$

$$d = \frac{e+1}{e \ln(e+1)} = 1.0416.$$
(35)


Если d > 1.0416 — функция уравнения (35) положительная, если d < 1.0416 — отрицательная.

$$d\ln\left(1 + \frac{1}{e}\right) - e - 1 = 0.$$


$$d = \frac{e+1}{\ln\left(\frac{e+1}{e}\right)} = 11.87.$$

$$(36)$$

Если d > 11.87 — функция уравнения (35) положительная, если d < 11.87 — отрицательная.

Рис. 1. Зависимости A_e от C_e для дозы сорбента 2 г: при изменении C_e до 2000 мг/дм³ (а); при изменении C_e до 0.7 мг/дм³ (б); I — эксперимент, изотермы: Темкина (2), Еловича (3), Ленгмюра (4), Дубинина—Радушкевича (5), Фрейндлиха (6).

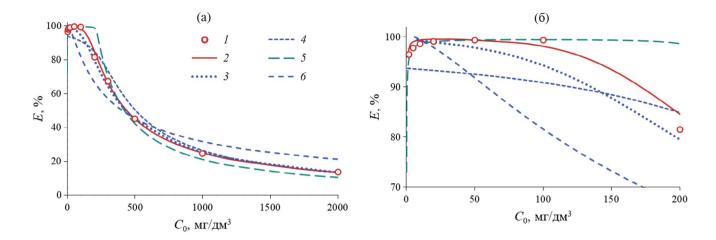
Рис. 2. Экспериментальная зависимость E от C_0 для доз сорбента: 1 (I), 2 (Z), 5 г (Z).

Таким образом, если величина d < 1.0416 или d > 11.87 функция является возрастающей либо убывающей. Если 1.0416 < d < 11.87, то функция (уравнение (35)) на данном интервале меняет свой знак с положительного на отрицательный. Следовательно, производная функции (уравнение (33)) в интервале 1.0416 < d < 11.87 меняет свой знак с плюса на минус, что свидетельствует о существовании максимума функции.

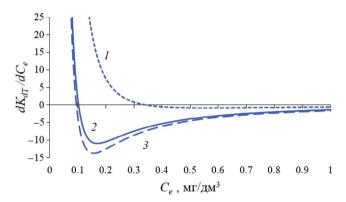
Определение параметров изотерм адсорбции и построение графических зависимостей

Параметры изотерм адсорбции, найденные методом линеаризации, приведены в табл. 2. Сравнение экспериментальных и расчетных данных зависимости равновесной величины адсорбции A_e от равновесной концентрации C_e фосфатов в растворе приведено на рис. 1 для различных диапазонов изменения C_e . Для малых значений равновесных

концентраций фосфатов C_e в растворе после сорбции (рис. 16) лучшее описание дает изотерма Дубинина—Радушкевича. При больших концентрациях $C_e > 35 \text{ мг/дм}^3$ — изотерма Темкина (рис. 1а).


Экспериментальные значения эффективности извлечения E фосфатов из раствора в зависимости от начальной концентрации фосфатов в растворе C_0 приведены на рис. 2, где цифрами показаны дозы сорбента. С увеличением дозы сорбента высокое значение эффективности извлечения E отвечает большему диапазону начальной концентрации фосфатов в растворе C_0 . Например, для дозы сорбента 5 г при малых концентрациях C_0 от 2 до 10 мг/дм^3 E возрастает, для C_0 от 10 до 300 мг/дм^3 E > 99% и для $C_0 > 300 \text{ мг/дм}^3$ снижается, т.е. наблюдается максимум функции.

На рис. 3 приведено сравнение экспериментальных и расчетных значений E по моделям адсорбции при различных диапазонах изменения C_0 для дозы сорбента 2 г.


Изотерма Дубина—Радушкевича предсказывает высокую эффективность извлечения фосфатов при изменении C_0 от 2 до $200~\rm Mг/дм^3$. Наилучшее согласование экспериментальных и расчетных данных по эффективности извлечения фосфатов получено по изотерме Темкина.

Коэффициент распределения смеси фосфаты — сорбент

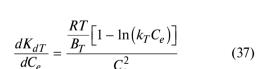

Предварительно построим графические зависимости производных по уравнению (37) (изотерма Темкина) (рис. 4) и по уравнению (38) (изотерма Дубинина—Радушкевича (рис. 5). Уравнения (37) и (38) записаны на основе уравнений (24) и (33) путем обратной замены переменных.

Рис. 3. Сравнение экспериментальных и расчетных значений эффективности извлечения фосфатов из раствора по моделям адсорбции для дозы сорбента 2 г: при изменении C_0 до 2000 мг/дм³ (а); при изменении C_0 до 200 мг/дм³ (б); I — эксперимент, изотермы: Темкина (2), Еловича (3), Ленгмюра (4), Дубинина—Радушкевича (5), Фрейндлиха (6).

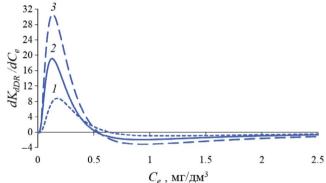
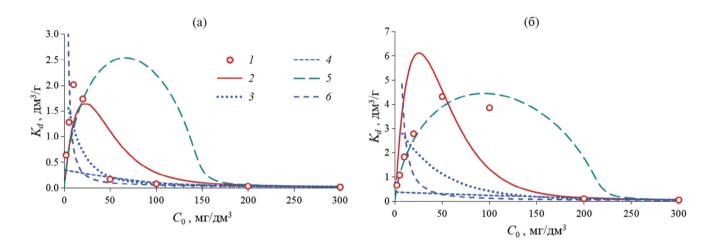


Рис. 4. Графическая зависимость производной по уравнению (37) (изотерма Темкина) для дозы сорбента: 1 (I), 2 (I) и 5 г (I).

$$\frac{dK_{dDR}}{dC_e} = \frac{A_m \left(2k_{DR} (RT)^2 \ln\left(1 + \frac{1}{C_e}\right) - C_e - 1\right)}{e^{k_{DR} (RT)^2 \ln\left(\frac{C_e + 1}{C_e}\right)} \cdot C_e^2 (C_e + 1)}.$$
 (38)

Обе графические зависимости показывают наличие корня функции (рис. 4 и рис. 5), при котором производная dK_d/dC_e равна 0. Обе функции меняют знак с плюса на минус, что подтверждает наличие максимума функций $K_{dT} = f(C_e)$, $K_{dT} = f(C_0)$ и $K_{dDR} = f(C_e)$, $K_{dDR} = f(C_0)$. В табл. 3 приведены корни функций уравнений (37) и (38).

Рис. 5. Графическая зависимость производной по уравнению (38) (изотерма Дубинина—Радушкевича) для дозы сорбента: 1 (I), 2 (I) и 5 г (I).


Для вычисления коэффициента распределения K_d выполнены расчеты равновесной сорбционной емкости A_e по изотермам адсорбции путем задания равновесных концентраций фосфатов C_e в растворе. Для построения зависимости $K_d = f(C_0)$ начальная концентрация фосфатов C_0 определена из уравнения (4). Объем раствора принят равным V = 0.05 дм³ как при проведении экспериментальных исследований для возможности сравнения расчетных и экспериментальных K_d

$$C_0 = \frac{A_e m + C_e \left(V - v_p m \right)}{V}.$$
 (39)

Расчет C_0 проведен по следующему алгоритму: задавались значением C_e , по уравнению изотермы адсорбции вычисляли A_e , по уравнению (39)

		Доза сорбента				
Изотерма адсорбции	Производная	1 r	2 г	5 г		
		C_e , мг/дм 3				
Темкин	$\frac{dK_{dT}}{dC_e} = 0$	0.3399594578	0.1027247515	0.0950900368		
Дубинин-Радушкевич	$\frac{dK_{dDR}}{dC_e} = 0$	0.6470993381	0.5255312924	0.5395529883		

Таблица 3. Корни функций уравнений (37) и (38)

Рис. 6. Зависимости коэффициента распределения K_d от начальной концентрации фосфатов C_0 в растворе для дозы сорбента:1 (а) и 2 г (б); I— эксперимент, изотермы: Темкина (2), Еловича (3), Ленгмюра (4), Дубинина—Радушкевича (5), Фрейндлиха (6).

определяли C_0 , зная A_e и C_e рассчитывали K_d по уравнению (1) и строили зависимость $K_d = f(C_0)$.

На рис. 6 приведены зависимости K_d от C_0 для доз сорбента 1 г и 2 г. Расчет K_d с использованием изотерм адсорбции Фрейндлиха и Еловича показал резко убывающую монотонную кривую, с использованием изотермы Ленгмюра эта зависимость является практически прямой линией с низкими значениями K_d , а с использованием изотерм Темкина и Дубинина—Радушкевича обе зависимости имеют максимум в области низких концентраций C_0 . Такое поведение K_d было теоретически получено выше на основе анализа изотерм адсорбции.

Сравнение кривых с использованием изотерм Темкина и Дубинина—Радушкевича (рис. 6) показывает, что зависимость $K_d = f(C_0)$ с использованием изотермы Темкина имеет ярко выраженный максимум при малых концентрациях C_0 от 15 до $20~{\rm Mr/дm^3}$, а максимум с использованием изотермы Дубинина—Радушкевича расположен в диапазоне C_0 от 60 до 80 мг/дм³ (рис. 6а).

Качественное описание экспериментальных данных максимума функции получено с использованием изотерм Темкина и Дубинина—Радушкевича. На наш взгляд, лучшее описание при дозе сорбента 1 г получено с использованием изотермы Темкина, а при дозе сорбента 2 г — по изотерме Дубинина—Радушкевича.

В качестве примера на рис. 7 приведена графическая зависимость коэффициента распределения K_d от равновесной концентрации фосфатов в растворе C_e для дозы сорбента 1 г. Лучшее описание экспериментальных данных максимума функции получено с использованием изотермы Темкина, что объясняется пропорциональностью C_e и C_0 и подтверждает результаты, приведенные на рис. 6а).

Проведенные исследования показали, что зависимость K_d от C_e и C_0 для смеси фосфаты — сорбент имеет максимум при низких концентрациях фосфатов в исходном растворе C_0 . Изотермы Ленгмюра, Фрейндлиха и Еловича не применимы для зависимости $K_d = f(C_e)$ или $K_d = f(C_0)$, имеющей экстремум. Адекватное описание данной зависимости

C_0 , мг/дм ³	C_e , мг/дм 3	A_e , мг/г	K_d , дм 3 /г	E, %
5	3.833	0.06029	0.0157	24.120
20	13.969	0.30790	0.0220	30.864
30	22.665	0.37863	0.0167	25.214
50	40.498	0.49522	0.0122	19.825
100	86.441	0.71991	0.0083	14.436
200	184.638	0.86038	0.0047	8.617
300	283.698	0.96224	0.0034	6.387

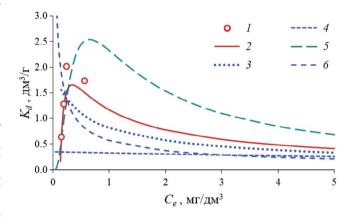
Таблица 4. Экспериментальные исследования фазового равновесия в системе ионы аммония — прокаленный сорбент [16]

Обозначения: C_0 — исходная концентрация ионов аммония в растворе, C_e — равновесная концентрация ионов аммония в растворе после сорбции, A_e — равновесная величина адсорбции, K_d — коэффициент распределения, E — эффективность извлечения ионов аммония.

Таблица 5. Константы изотерм адсорбции Темкина и Дубинина—Радушкевича

Изотер	ма Темкина		Изотерма Дубинина-Радушкевича			
B_T , Дж г/(моль мг)	k_T , дм 3 /мг	R^2	A_m , мг/г	$k_{\mathit{DR},}$ моль 2 /кДж 2	R^2	
11629.609	0.3028	0.9934	0.6079	7.6839	0.8568	

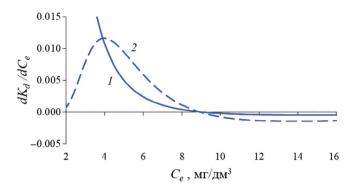
получено при использовании изотерм Темкина и Дубинина—Радушкевича.

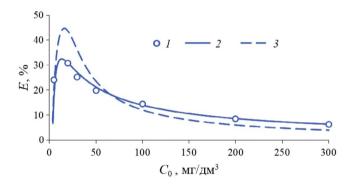

Коэффициент распределения смеси ионы аммония— сорбент

В работе [16] нами приведены экспериментальные данные по фазовому равновесию в системе ионы аммония — сорбент при дозе сорбента 1 г (табл. 4), которые представлены в виде полученной зависимости $A_e = f(C_e)$ на основе изотерм Ленгмюра и Фрейндлиха. Экспериментальная зависимость $K_d = f(C_e)$ имеет максимум функции при $C_e = 13.969$ мг/дм 3 ($C_0 = 20$ мг/дм 3).

Применим изотермы Темкина и Дубинина— Радушкевича для нахождения теоретической зависимости $K_d = f(C_e)$ в системе ионы аммония — сорбент. Выполним аппроксимацию экспериментальных данных на основе изотерм Темкина и Дубинина—Радушкевича. Константы данных изотерм адсорбции, найденные методом линеаризации, приведены в табл. 5.

По уравнениям (37) и (38) на рис. 8 построены графические зависимости производных dK_{dT}/dC_e и dK_{dDR}/dC_e . Обе функции меняют знак с плюса на минус. Корень обеих функций оказался равным $C_e = 9$ мг/дм³, при котором функции имеют максимум в координатах $K_d = f(C_e)$ (рис. 9).


На рис. 10 приведена графическая зависимость эффективности извлечения ионов аммония E,%, от концентрации ионов аммония в исходном растворе


Рис. 7. Зависимости коэффициента распределения K_d от равновесной концентрации фосфатов C_e в растворе для дозы сорбента 1 г; I — эксперимент, изотермы: Темкина (2), Еловича (3), Ленгмюра (4), Дубинина—Радушкевича (5), Фрейндлиха (6).

 C_0 , мг/дм³. Форма кривых идентична графическим зависимостям рис. 9, что объясняется пропорциональностью величин E и K_d , C_e и C_0 .

Таким образом, применение изотерм Темкина и Дубинина—Радушкевича для описания зависимости $K_d = f(C_e)$ (или $K_d = f(C_0)$) при фазовом равновесии в системе ионы аммония — сорбент (в статике) при малых концентрациях адсорбтива в растворе является адекватным.

Рис. 8. Графические зависимости производных по уравнению (37) (1 – изотерма Темкина) и уравнению (38) (2 – изотерма Дубинина—Радушкевича).

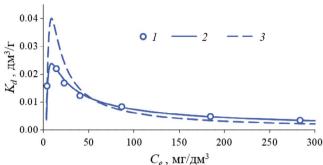


Рис. 10. Зависимости эффективности извлечения ионов аммония E, %, от концентрации ионов аммония C_0 в исходном растворе для дозы сорбента 1 г; I — эксперимент, изотермы: Темкина (2), Дубинина—Радушкевича (3).

ЗАКЛЮЧЕНИЕ

Проведенный теоретический анализ коэффициента распределения на основе изотерм адсорбции Ленгмюра, Фрейндлиха, Еловича, Темкина и Дубинина-Радушкевича позволил установить наличие максимума функции при небольших концентрациях адсорбтива при использовании изотерм Темкина и Дубинина—Радушкевича. Экспериментальное исследование фазового равновесия физической адсорбции (в статике) в системах фосфаты — сорбент и ионы аммония — сорбент выявило наличие максимума коэффициента распределения и эффективности очистки (извлечения). Качественное описание экспериментальных данных K_d получено при использовании изотерм Темкина и Дубинина—Радушкевича.

Исследование выполнено при финансовой поддержке Кубанского научного фонда в рамках научного проекта № МФИ-20.1/57 (грант КНФ, № гос. регистрации 122101000007-2).

Рис. 9. Зависимости коэффициента распределения K_d от равновесной концентрации ионов аммония C_e в растворе для дозы сорбента 1 г; I — эксперимент, изотермы: Темкина (2), Дубинина—Радушкевича (3).

СПИСОК ЛИТЕРАТУРЫ

- Gupta V.K., Sadegh H., Yari M. et al. // Global J. Environ. Sci. Manage. 2015. V. 1. № 2. P. 149. DOI: 10.7508/gjesm.2015.02.007
- 2. *Usman M.O., Aturagaba G., Ntale M. et al.* // Water Science & Technology. 2022. V. 86. № 12. P. 3113 DOI: 10.2166/wst.2022.382
- 3. *Kalló D.* // Reviews in Mineralogy and Geochemistry. 2001. V. 45. № 1. P. 519. https://doi.org/10.2138/rmg.2001.45.15
- 4. *Кондрашова А.В., Кузьмина Р.И.* // Наука и бизнес: пути развития. 2022. № 5 (131). С. 135. https://elibrary.ru/item.asp?id=49185808
- Seruga P., Krzywonos M., Pyżanowska J. et al. // Molecules. 2019. V. 24. 3633
 DOI:10.3390/molecules24203633
- Deng Z., Gu S., Cheng H. et al. // Appl. Sci. 2022.
 V. 12. 5334. https://doi.org/10.3390/app12115334
- Fetene Y., Addis T. // Air, Soil and Water Research. 2020. V. 13. P. 1. DOI:10.1177/1178622120969658
- 8. Boopathy R., Karthikeyan S., Mandal A.B. et al. // Environ Sci Pollut Res. 2013. V. 20. P. 533. DOI: 10.1007/s11356-012-0911-3
- Ghising R.B., Jha V.K. // Journal of Nepal Chemical Society. 2022. V. 43. No. 1. P. 17. DOI: 10.3126/jncs.v43i1.46998
- Ahmad S.Z.N., Hamdan R., Wan Mohamed W.A. // MATEC Web of Conferences 103. 2017. 06018 DOI: 10.1051/matecconf/201710306018
- 11. Affandi K.A., Bagastyo A.Y., Fitriana A.R. // J. of Environment and Sustainability. 2021. V. 5. No 1. P. 25. DOI: https://doi.org/10.22515/sustinere.jes.v5i1.129

- 12. *Zhang K., Dyk L.V., He D. et al.* // Green Processing and Synthesis. 2021. V. 10. No. 1. P. 349. https://doi.org/10.1515/gps-2021-0032
- 13. *Lam N.H.*, *Ma H.T.*, *Bashir M.J.K. et al.* // Intern. J. of Environmental Analytical Chemistry. 2021. V. 101. № 15. P. 2668. https://doi.org/10.1080/03067319.2019.1708907
- 14. *Bushumov S.A., Korotkova T.G.* // RASÃYAN J. of Chemistry. 2020. V. 13. № 3. P. 1619. https://doi.org/10.31788/RJC.2020.1335454
- 15. *Короткова Т.Г., Бушумов С.А.* // Химическая технология. 2023. Т. 24. № 11. С. 423 DOI: 10.31044/1684-5811-2023-24-11-423-431
- 16. *Короткова Т.Г., Заколюкина А.М., Бушумов С.А.* // Изв. вузов. Прикладная химия и биотехнология. 2023. Т. 13. № 2. С. 291. DOI: https://doi.org/10.21285/2227-2925-2023-13-2-291-303
- 17. *Korotkova T.G., Zakolyukina A.M., Bushumov S.A.* // Theoretical and Applied Ecology. 2023. № 4. pp. 99–109
 DOI: 10.25750/1995-4301-2023-4-099-109
- 18. Runtti H., Sundhararasu E., Pesonen J. et al. // ChemEngineering. 2023. V. 7. No. 5. https://doi.org/10.3390/ chemengineering7010005
- 19. *Zhao Y., Luan H., Yang B. et al.* // Water. 2023. V. 15. № 5. P. 956. https://doi.org/10.3390/w15050956
- 20. *Wu D., Zhang B., Li C. et al.* // Journal of Colloid and Interface Science. 2006. V. 304. № 2. pp. 300–306. DOI:10.1016/j.jcis.2006.09.011

- 21. Reynolds W.D., Gillham R.W., Cherry J.A. // Can. Geotech. J. 1982. V. 19. № 1. P. 92. DOI:10.1139/t82-008
- 22. Pathak P., Singh D.N., Pandit G.G. et al. // Int. J. Environment and Waste Management. 2014. V. 14. № 1. P. 27. DOI:10.1504/IJEWM.2014.062980
- 23. Pangarkar B.L., Shrimal P., Daware G.B. et al. // Water Practice and Technology. 2022. V. 17. № 11. P. 2386. https://doi.org/10.2166/wpt.2022.128
- 24. Boopathy R., Karthikeyan S., Mandal A.B. et al. // Environmental Science and Pollution Research. 2012. V. 20. № 1. P. 533. DOI: 10.1007/s11356-012-0911-3
- Zhang L. Y., Zhang H. Y., Guo W. et al. // Int. J. Environ. Sci. Technol. 2013. V. 10. No. 6. DOI:10.1007/s13762-012-0168-x
- 26. *Конькова Т.В., Рысева А.П., Малькова Ю.О.* // Журн. физ. химии. 2021. Т. 95. № 1. С. 28. DOI: 10.31857/S004445372101012X
- 27. *Ji X.D.*, *Zhang M.L.*, *Ke Y.Y. et al.* // Water Science & Technology. 2013. V. 67. № 6. P. 1324. DOI: 10.2166/wst.2013.690
- 28. *Hamdaoui O.*, *Naffrechoux E.* // Journal of Hazardous Materials. 2007. V. 147. № 1–2. P. 381. https://doi.org/10.1016/j.jhazmat.2007.01.021
- 29. Benmessaoud A., Nibou D., Mekatel El Hadj et al. // Iranian Journal of Chemistry and Chemical Engineering. 2020. V. 39. № 4. P. 153. DOI: 10.30492/ijcce.2019.35116