—— ФИЗИЧЕСКАЯ ХИМИЯ PACTBOPOB —

УЛК 544.35

ОБЪЕМНЫЕ ЭФФЕКТЫ ПРИ ВЗАИМОДЕЙСТВИИ L-ГИСТИДИНА С ИЗОМЕРАМИ ПИРИДИНМОНОКАРБОНОВОЙ КИСЛОТЫ В ВОЛНОМ БУФЕРНОМ РАСТВОРЕ

© 2024 г. Е.Ю. Тюнина^{a, *}, Г.Н. Тарасова^a, И.Н. Межевой^a, Д.Р. Ставнова^b

^аИнститут химии растворов им. Г.А. Крестова РАН, 153045, Иваново, Россия ^bИвановский государственный университет, 153025, Иваново, Россия

*e-mail: tey@isc-ras.ru

Поступила в редакцию 13.12.2023 г. После доработки 24.01.2024 г. Принята к публикации 18.04.2024 г.

Методом денсиметрии изучено взаимодействие L-гистидина (His) с никотиновой (NA), изоникотиновой (INA) и пиколиновой (PA) кислотами в водном буферном растворе при изменении температуры от 288.15 К до 313.15 К. Используя полученные данные по плотности, определены кажущиеся молярные объемы и предельные кажущиеся молярные объемы изомеров пиридинмонокарбоновой кислоты (РуСООН) при бесконечном разбавлении и их производные по температуре в буферном растворе, содержащем аминокислоту. В отличие от линейных концентрационных зависимостей кажущегося молярного объема изомеров РуСООН в буферном растворе, для тройных систем (PyCOOH – His – буфер) эти зависимости носят нелинейный характер, что предполагает образование молекулярного комплекса между растворенными веществами. Определены предельные кажущиеся молярные расширяемости и их производные по температуре, значения которых свидетельствуют об увеличении упорядоченности растворителя при добавлении аминокислоты к раствору PvCOOH в буфере в ряду изомеров $PA \rightarrow NA \rightarrow INA$. Показано, что предельные кажущиеся молярные объемы переноса РуСООН из буфера в буферный раствор, содержащий His, имеют положительные значения и возрастают в изученном интервале температур. Полученные результаты обсуждены на основе преобладающих типов молекулярных взаимодействий между растворенным веществом и растворителем с использованием модели Гэрни.

Ключевые слова: плотность, кажущийся молярный объем, предельный кажущийся молярный объем, расширяемость, изомеры пиридинмонокарбоновой кислоты, L-гистидин, молекулярные комплексы, фосфатный буфер

DOI: 10.31857/S0044453724100093, **EDN:** EBNNCW

Азотосодержащие гетероциклические соединения играют важную роль во многих химических и биохимических процессах, являясь структурными элементами белков, ДНК, РНК, входят в состав множества фармацевтических и косметических препаратов. Пиридинкарбоновые кислоты (РуСООН) и их производные представляют собой семейство N-гетероциклических молекул, которые применяются для улучшения метаболических процессов, снижения уровня холестерина и триглицеридов в крови, в качестве пищевых добавок и активных противоопухолевых, противотуберкулезных, антибактериальных агентов в лекарственных средствах [1-3]. Как многофункциональные лиганды, они способны к образованию комплексов с металлами [4-6], что находит применение при очистке сточных вод [7], при разработке сенсибилизирующих красителей для солнечных элементов [8] и др.

Три изомерные молекулы пиколиновой (PA), никотиновой (NA) и изоникотиновой (INA) кислот имеют карбоксильную группу (—COOH), соответственно, во 2-м, 3-м и 4-м положениях пиридинового кольца относительно атома азота (рис. 1). Благодаря наличию в молекулах РуСООН кислотного и основного центров, они существуют в виде цвиттер-ионов в кристаллическом состоянии, как и аминокислоты. Водный раствор пиридинкарбоновой кислоты является слабокислым, атом водорода карбоксильной группы имеет тенденцию к ионизации. Вследствие того, что гетероциклические соединения составляют основу строения витаминов и других лекарственных препаратов, их физико-химические свойства и взаимодействия

Никотиновая пиколиновая кислота (NA) кислота (PA) изоникотиновая кислота (INA)
$$\begin{pmatrix} O \\ O \end{pmatrix}$$
 ОН $\begin{pmatrix} O \\ O \end{pmatrix}$ ОН $\begin{pmatrix} O \\ N \\ N \end{pmatrix}$

Рис. 1. Структура исследуемых соединений.

с другими биологически активными веществами до сих пор представляют интерес для исследования разными методами [9—13]. Одной из актуальных задач является изучение природы взаимодействий в растворах модельных соединений белков (аминокислот) и лекарственных средств (РуСООН), так как особенности их поведения во многом определяют биологическую функциональность более сложных биосистем.

Гистидин (His) – одна из незаменимых α-аминокислот, принадлежащая к группе ароматических и гетероциклических аминокислот, обладает слабыми основными свойствами, обусловленными присутствием имидазольного кольца в боковой цепи молекулы (рис. 1). Благодаря резонансной делокализации заряда, имидазольное кольцо при протонировании является основным (р K_{a} ~ 6.0) и протонируется уже при слабокислых значениях рН и, следовательно, может служить как донором, так и акцептором протонов в химической реакции, связывая протон одним атомом азота и отдавая протон от другого атома азота [14, 15]. Кислотно-основные и координирующие свойства имидазольной боковой цепи данной аминокислоты делают ее важнейшим компонентом активных центров в более 50 окислительно-восстановительных и гидролитических энзимах [16]. Гистидин входит в состав многих витаминных комплексов, используется при лечении ревматоидных артритов, аллергий, язв и анемии [17].

В предыдущих работах [18, 19] методами калориметрии, денсиметрии и УФ-спектроскопии изучено взаимодействие аминокислоты L-гистидина с никотиновой кислотой в воде и буферном растворе при T=298.15 К; полученные результаты свидетельствовали об образовании молекулярных комплексов между реагентами и позволили оценить влияние рН среды на их стабильность. В литературе отсутствуют данные по плотности растворов трех изомеров пиридинкарбоновой кислоты (РуСООН) в водном фосфатном буфере (рН 7.4), содержащем L-гистидин, в широком интервале температур. Целью данной работы является установление влияния температуры

и структурной изомерии в молекулах пиридинмонокарбоновой кислоты (NA, PA, INA) на их взаимодействия с гетероциклической аминокислотой L-гистидином в водном буферном растворе (рН 7.4) на основе использования денсиметрического метода. Как известно [20], объемные свойства растворов наиболее чувствительны к взаимодействиям растворенного вещества с растворителем и сорастворенным веществом, а также к изменению их гидратации под действием температуры и кислотности среды. В представленной работе получены новые данные по кажущимся молярным объемам и предельным кажущимся молярным объемам РуСООН в буферном растворе, содержащем Ніѕ, обсуждение которых проведено на основе рассмотрения взаимодействий (растворенное вещество – растворитель, растворенное вещество - сорастворенное вещество) в рамках подхода Гэрни [21].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали L-гистидин (Sigma-Aldrich, Japan, CAS63-91-2, >0.99), никотиновую кислоту (Sigma-Aldrich, Germany, CAS59-67-6, ≥0.98), пиколиновую кислоту (Aldrich, CAS98-98-6, ≥0.99) и изоникотиновую кислоту (Aldrich, CAS55-22-1, 0.99). Аминокислоту и изомеры пиридинкарбоновой кислоты сушили при 356 К в вакуумном шкафу в течение 48 ч непосредственно перед использованием. Исследования проводили в водном буферном растворе, содержащим $0.0416 \text{ моль кг}^{-1}$ NaH_2PO_4 и 0.2049 моль $\kappa \Gamma^{-1}$ Na_2HPO_4 , при pH 7.4, что приближает среду к условиям реальных биологических систем. Значения рН растворов фиксировали цифровым pH-метром Mettler Toledo, модель Five-Easy. Все растворы приготовлены весовым методом, используя весы Sartorius-ME215S (с точностью взвешивания 1×10^{-5} г). Погрешность приготовления растворов нужной концентрации не превышала $\pm 2 \times 10^{-4}$ моль кг⁻¹.

Измерения плотности исследуемых растворов выполнены на цифровом вибрационном денсиметре DMA-5000M (Anton Paar, Австрия) при

1.021550

1.021551

1.021553

1.021559

1.021562

1.021567

никотиновую кислоту (NA), при разных концентрациях и температурах							
m , моль·кг $^{-1}$	ρ, r·cm ⁻³						
	288.15 K	298.15 K	303.15 K	308.15 K	313.15 K		
0.0000	1.029890	1.027141	1.025424	1.023565	1.021539		
0.0024	1.029942	1.027179	1.025447	1.023579	1.021544		
0.0070	1.030004	1.027229	1.025464	1.023590	1.021545		
0.0104	1.030027	1.027239	1.025469	1.023591	1.021546		
0.0126	1.030037	1.027251	1.025470	1.023592	1.021547		
0.0177	1.030066	1.027253	1.025472	1.023593	1.021548		

1.025474

1.025475

1.025476

1.025483

1.025487

1.025501

1.027255

1.027261

1.027266

1.027290

1.027297

1.027316

Таблица 1. Плотность водных буферных растворов, содержащих L-гистидин ($m_{\rm His}$ =0.0125 \pm 0.0002 моль·кг $^{-1}$) и никотиновую кислоту (NA), при разных концентрациях и температурах

Таблица 2. Плотность водных буферных растворов, содержащих L-гистидин ($m_{\rm His}$ =0.0127±0.0002 моль·кг $^{-1}$) и пиколиновую кислоту (PA), при разных концентрациях и температурах

	ρ, г·cm ⁻³					
m , моль·кг $^{-1}$	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	313.15 K
0.0000	1.031190	1.029145	1.028431	1.026775	1.024906	1.022897
0.0070	1.031331	1.029279	1.028556	1.026891	1.025012	1.022992
0.0100	1.031381	1.029327	1.028603	1.026935	1.025048	1.023028
0.0125	1.031416	1.029363	1.028635	1.026964	1.025077	1.023055
0.0180	1.031504	1.029448	1.028711	1.027032	1.025136	1.023117
0.0200	1.031534	1.029467	1.028731	1.027049	1.025153	1.023134
0.0220	1.031554	1.029492	1.028755	1.027073	1.025170	1.023150
0.0250	1.031595	1.029529	1.028795	1.027109	1.025200	1.023177
0.0300	1.031680	1.029610	1.028877	1.027185	1.025266	1.023236
0.0320	1.031726	1.029649	1.028918	1.027219	1.025301	1.023265

температурах 288.15, 293.15, 298.15, 303.15, 308.15 и 313.15 К. Два встроенных платиновых термометра Pt100 в сочетании с элементами Пельтье обеспечивали термостатирование образца внутри ячейки с погрешностью 5×10^{-3} К. Перед каждой серией измерений проводили калибровку ячейки сухим воздухом и дважды дистиллированной дегазированной водой при атмосферном давлении. Подробное описание процедуры измерения дано ранее [22]. Концентрация пиридинкарбоновой кислоты в буферном растворе изменялась до ~ 0.03 моль \cdot кг $^{-1}$ при фиксированной концентрации аминокислоты. Стандартная погрешность измерения плотности растворов составила $\pm 1.22\times10^{-5}$ г см $^{-3}$. Общая погрешность измерения ρ (с учетом коэффициента

0.0198

0.0209

0.0219

0.0249

0.0254

0.0279

1.030086

1.030096

1.030098

1.030142

1.030152

1.030182

Стьюдента t=2.78 при доверительной вероятности 0.95, n=5) не превышала $\pm 2.92 \times 10^{-5} \Gamma \cdot \text{см}^{-3}$.

1.023596

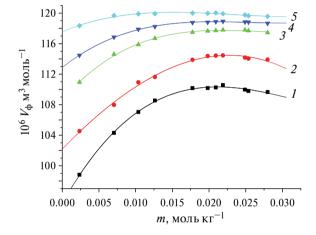
1.023597

1.023599

1.023603

1.023604

1.023613


Экспериментальные данные по плотности (ρ) исследуемых растворов приведены в табл. 1—3. Как видно из таблиц, наблюдается тенденция возрастания плотности растворов с ростом концентрации пиридинкарбоновой кислоты и уменьшения их значений с температурой.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

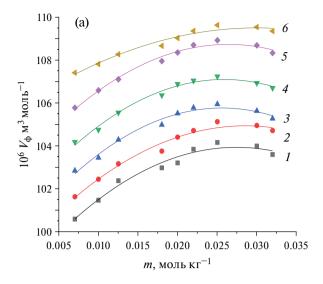
Известно, что в водных растворах аминокислота (His) и пиридинкарбоновые кислоты (NA, PA, INA) могут находиться в различных ионных формах в зависимости от рН. Ранее было показано [18,

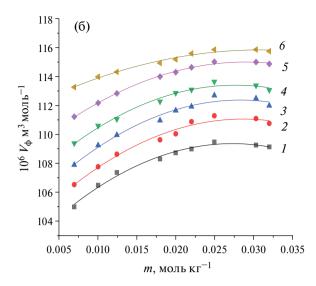
1	ρ, _Γ ·cm ⁻³					
m , моль·кг $^{-1}$	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	313.15 K
0.0000	1.031190	1.029145	1.028431	1.026775	1.024906	1.022897
0.0069	1.031297	1.029242	1.028518	1.026852	1.024971	1.022948
0.0100	1.031328	1.029271	1.028542	1.026873	1.024990	1.022964
0.0124	1.031349	1.029290	1.028559	1.026981	1.025001	1.022975
0.0179	1.031402	1.029335	1.028597	1.026919	1.025022	1.022998
0.0199	1.031416	1.029348	1.028601	1.026923	1.025028	1.023005
0.0220	1.031433	1.029349	1.028612	1.026933	1.025033	1.023007
0.0249	1.031453	1.029365	1.028616	1.026939	1.025040	1.023014
0.0303	1.031516	1.029418	1.028662	1.026983	1.025069	1.023039
0.0320	1.031538	1 029445	1.028692	1.027005	1.025082	1.023051

Таблица 3. Плотность водных буферных растворов, содержащих L-гистидин ($m_{\rm His}$ =0.0127±0.0002 моль·кг $^{-1}$) и изоникотиновую кислоту (INA), при разных концентрациях и температурах

Рис. 2. Концентрационные зависимости кажущихся молярных объемов (V_{ϕ}) никотиновой кислоты в водном буферном растворе L-гистидина при температурах: 288.15 (I), 298.15 (Z), 303.15 (Z), 308.15 (Z), 313.15 K (Z); Z0.125Z0.002 моль-кгZ1.

23], что гистидин существует преимущественно в виде цвиттер-иона (HL^{\pm}) в интервале pH от ~ 5.8 до 9.5, при pH > 9.5 — в форме аниона (L^{-}), а при значениях pH, меньших 5.8 — в катионных формах ($H_{2}L^{+}, H_{3}L^{2+}$). Таким образом, при фиксированном значении pH 7.4 преобладает цвиттерионная форма L-гистидина (HL^{\pm}), имеющая диссоциированную карбоксильную группу и протонированную α -аминогруппу; в этих условиях имидазольная группировка депротонирована [17] и вероятность наличия катионной формы ($H_{2}L^{+}$) составляет менее 5%.


В работах [11, 24] представлены диаграммы долевого распределения ионных форм NA, PA и INA при изменении pH раствора, согласно которым в буферном растворе с рН 7.4 изомеры РуСООН принимают форму анионов (L^-). Поэтому можно считать, что именно в этой форме исследуемые пиридинкарбоновые кислоты участвуют в процессах взаимодействия с гистидином в буферном растворе.


Кажущийся молярный объем изомеров пиридинкарбоновой кислоты PyCOOH (V_{ϕ}) в буферном растворе аминокислоты определен на основе общепринятого предположения [25, 26], что молекулярный объем растворителя в растворе не зависит от состава раствора, и изменение плотности раствора связано только с изменением числа молекул растворенного вещества. Используя экспериментальные значения плотности, проведен расчет величин V_{ϕ} по уравнению [25, 27]:

$$V_{\varphi} = 1000 (\rho_0 - \rho) / \rho \rho_0 m + M/\rho, \qquad (1)$$

где ρ_0 и ρ — плотности растворителя и раствора ($r \cdot cm^{-3}$), m — моляльная концентрация РуСООН (моль κr^{-1}), M — ее молекулярная масса. Растворителем в тройной системе (РуСООН — His — буфер) является буферный раствор аминокислоты (с фиксированной концентрацией).

Ранее показано [28], что зависимости $V_{\phi} = f(m)$ для пиридинмонокарбоновых кислот в буферном растворе описываются линейной функцией. В случае тройной системы (РуСООН — His — буфер) меняется форма концентрационных зависимостей кажущихся молярных объемов изомеров РуСООН, которые приобретают нелинейный характер (рис. 2, 3). С ростом концентрации пиридинкарбоновой кислоты в буферных растворах, содержащих His, наблюдается увеличение значений V_{ϕ} , достигающих наибольших величин при моляльности $m_{\rm PyCOON} \approx 0.025$ моль·кг $^{-1}$, что

Рис. 3. Концентрационные зависимости кажущихся молярных объемов (V_{ϕ}) пиколиновой (а) и изоникотиновой (б) кислот в водном буферном растворе L-гистидина при температурах: 288.15 (I), 293.15 (I), 298.15 (I), 308.15 (I), 313.15 K (I); I0, 313.15 K (I0); I1, I1, I2, I3, I3, I3, I3, I3, I3, I3, I3, I4, I3, I4, I5, I6, I7, I8, I8, I9, I1, I

соответствует мольному соотношению ~1:2 между Ніѕ и РуСООН, и практически выходящих на "плато" с увеличением температуры. Полученные нелинейные зависимости $V_{\phi} = f(m)$ позволяют предположить усиление взаимодействий между растворенными веществами, приводящих к образованию молекулярного комплекса между гистидином и изомерами пиридинкарбоновой кислоты, что сопровождается частичной дегидратацией молекул растворенных веществ [21, 29-31]. С повышением температуры происходит высвобождения электрострикционно сжатых молекул воды из "рыхлых" гидратных сфер цвиттерионов His и анионов РуСООН в объем раствора, что дает положительный вклад в изменение объемных свойств и приводит к увеличению объема растворов [32, 33].

В тройной системе (PyCOOH — His — буфер) для определения предельных кажущихся молярных объемов (V_{ϕ}^{0}) при бесконечном разбавлении, использован полином второй степени для описания концентрационных зависимостей кажущихся молярных объемов (V_{ϕ}):

$$V_{\varphi} = V_{\varphi}^{0} + b_{1}m + b_{2}m^{2}, \tag{2}$$

где b_1 , b_2 — постоянные коэффициенты. Полученные значения $V_{\phi}^{\ 0}$ (табл. 4) положительны и увеличиваются с ростом температуры.

Анализ данных, представленных в табл. 4 и полученных ранее [28] для растворов РуСООН в буфере, показал, что значения предельного кажущегося молярного объема ($V_{\phi}^{\ 0}$) РуСООН в тройной системе (РуСООН—Ніѕ—буфер) больше, чем в бинарной системе (РуСООН — буфер) при каждой

температуре, что, по-видимому, отражает потерю структурно-разрушающего действия пиридинкар-боновых кислот на растворитель. Это свидетельствует о том, что добавление Ніз приводит к более сильным взаимодействиям растворенного вещества (РуСООН) с растворителем (Ніз—буфер) в тройных системах. Подобные тенденции наблюдались также для растворов NA в буфере, содержащем другие аминокислоты (Phe, Trp, Lys, Met) [18, 22, 34].

Изменения предельного кажущегося молярного объема ($\Delta_{\rm tr} V_{\phi}^{\ o}$)при переносе РуСООН из буфера в буферный раствор Ніѕ вычислены по соотношению:

$$\Delta_{tr}V_{\varphi}^{0} = V_{\varphi}^{0}(\text{PyCOOH} - \text{His} - \text{6ypep}) - V_{\varphi}^{0}(\text{PyCOOH} - \text{6ypep}).$$
(3)

Предельный кажущийся молярный объем переноса, $\Delta_{tr}V_{\phi}^{\ o}$, при бесконечном разбавлении свободен от взаимодействий растворенное вещество – растворенное вещество и дает информацию о взаимодействиях растворенное вещество (PyCOOH) – сорастворенное вещество (His) [27, 35-37]. Согласно модели перекрывания гидратных сфер Гэрни [21, 38], положительные значения $\Delta_{tr}V_{\phi}^{\text{ o}} > 0$ отражают взаимодействия, обусловленные, прежде всего, электростатическими силами между гидратированными зарядными группами (-NH₃⁺, COO⁻, COO⁻) в молекулах His и PyCOOH и образованием водородных связей между растворенными веществами и растворителем. Взаимодействие между гидратированными неполярными фрагментами исследуемых молекул (за счет

Таблица 4. Предельные кажущиеся молярные объемы $(V_{\phi}^{\, \mathrm{o}})$ изомеров пиридинкарбоновой кислоты при бесконечном разбавлении, значения их производных по температуре $E_{\phi}^{\, \mathrm{o}} = (\partial V_{\phi}^{\, \mathrm{o}}/\partial T)_{\mathrm{p}}$ и значения предельных кажущихся молярных объемов переноса $(\Delta_{tr}V_{\phi}^{\, \mathrm{o}})$ из буфера в буферный раствор с добавками L-гистидина (His) при разных температурах

<i>T</i> , K	$V_{\phi}^{\text{ o}} \times 10^{6},$ м 3 моль $^{-1}$	$E_{\varphi}^{\text{o}} \times 10^{6},$ м ³ моль ⁻¹ ·K ⁻¹ с	$\Delta_{tr}V_{\phi}^{\text{ o}}\times 10^{6},$ M^{3} МОЛЬ $^{-1}$		
	NA — His ^a — буфер				
288.15	96.12±0.39	0.688	3.33		
293.15	_	_	_		
298.15	101.89 ± 0.30	0.858	6.69		
303.15	109.58 ± 0.32	0.943	13.05		
308.15	113.51 ± 0.24	1.028	15.77		
313.15	118.06±0.21	1.113	19.64		
	$NA-His^a-$ буфер				
288.15	97.89±0.38	0.099	2.86		
293.15	99.05±0.35	0.179	2.40		
298.15	99.94 ± 0.32	0.260	1.82		
303.15	101.31 ± 0.29	0.341	1.85		
308.15	103.11 ± 0.30	0.421	2.1		
313.15	105.80 ± 0.32	0.502	3.7		
NA — His ^a — буфер					
288.15	101.79±0.34	0.154	0.84		
293.15	103.13 ± 0.39	0.243	1.10		
298.15	104.53 ± 0.39	0.332	1.28		
303.15	106.16±0.35	0.422	2.03		
308.15	108.39 ± 0.23	0.511	3.32		
313.15	111.57±0.25	0.601	5.33		

Примечание. ${}^am_{\rm His}=0.0125\pm0.0002~{\rm моль\cdot kr^{-1}}.$ ${}^6m_{\rm His}=0.0127\pm0.0002~{\rm моль\cdot kr^{-1}}.$ ${}^cE_{\phi}{}^o=(\partial V_{\phi}{}^o/\partial T)_{\rm p}$ вычислено по соотношению $(\partial V_{\phi}{}^o/\partial T)_{\rm p}$ = $\beta+2T\gamma$, с коэффициентами корреляции $R_{\rm corr}$, равными 0.988, 0.996 и 0.998 соответственно, для систем с NA, PA и INA (β и γ — константы из (4)).

гидрофобных сил) сопровождается понижением объема ($\Delta_{tr}V_{\phi}^{\circ}$ <0). Полученные положительные изменения объема $\Delta_{tr}V_{\phi}^{\circ}$, приведенные в табл. 4 для трех изомеров РуСООН, свидетельствуют о доминировании взаимодействий первого типа в буферных растворах исследуемых пиридинкарбоновых кислот в присутствии His. Наблюдается тенденция повышения величины $\Delta_{tr}V_{\phi}^{\circ}$ в ряду: INA<PA<NA, хотя при высоких температурах изменение объема переноса больше для INA, чем PA. Учитывая ионное состояние исследуемых веществ в буферном растворе, можно полагать, что движущими силами образования комплексов His с NA, PA и INA

являются преимущественно цвиттерион — анионные взаимодействия и водородные связи, что согласуется с литературными данными для других аминокислот в буферном растворе [39—41].

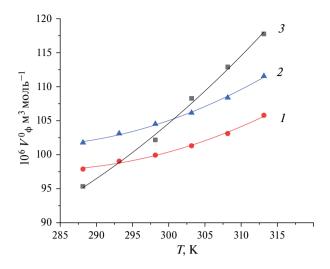
Температурные зависимости предельных кажущихся молярных объемов $V_{\phi}^{\ o}$ пиридинкарбоновых кислот (NA, PA, INA) в буферных растворах с аминокислотой (His) представлены на рис. 4 и описываются уравнением:

$$V_{\varphi}^{0} = \beta + \alpha T + \gamma T^{2}, (4)$$

где α , β и γ — константы, T — температура. Значения $(\partial V_{\phi}{}^{0}/\partial T)_{p}$ и $(\partial^{2}V_{\phi}{}^{0}/\partial T^{2})_{p}$ были вычислены путем дифференцирования уравнения (4). В табл. 4 приведены полученные положительные значения предельной кажущейся молярной расширяемости при бесконечном разбавлении $E_{\phi}{}^{0} = (\partial V_{\phi}{}^{0}/\partial T)_{p}$.

$$E_{\varphi}^{\ o} = E_{\varphi}^{\ o} \left(\text{elect} \right) + E_{\varphi}^{\ o} \left(\text{str} \right), \tag{5}$$

где E_{ω}^{o} (elect) — расширение вследствие изменения электрострикции молекул воды (вклад гидратации и дегидратации растворенных веществ при их взаимодействии), $E_{\varphi}^{\text{o}}(\text{str})$ — расширение вследствие изменения структуры растворителя (вклад гидрофобной гидратации); при этом, с ростом температуры наблюдается преобладание электрострикционного вклада для электролитных растворов или структурной составляющей (появление "эффекта клетки") для водных растворов гидрофобных соединений. В нашем случае полученные значения E_{0}^{0} увеличиваются с температурой в водных буферных растворах исследуемых растворенных веществ (His, NA, PA, INA), молекулы которых содержат как зарядные центры, так и гидрофобные группы, что способствует проявлению как электростатических взаимодействий между ними, так и эффектов гидрофобной гидратации [47]. По-видимому, повышение температуры сопровождается конкуренцией указанных выше вкладов в величину $E_{\omega}^{\ o}$. Таким образом, повышение температуры способствует проявлению гидрофобной гидратации и оказывает влияние, прежде всего, на молекулы воды, находящиеся в гидратных оболочках цвиттерионов аминокислоты и анионов РуСООН, делая их более "рыхлыми", что облегчает высвобождение электрострикционно сжатых молекул воды из сольватных сфер растворенных веществ в объем раствора при их взаимодействии, что приводит к более высоким значениям расширяемости $E_{\phi}^{\ \ \ }$. Значения $E_{\phi}^{\ \ \ \ }$ повышаются в ряду PA < INA < NA, что в первом приближении отражает тенденцию влияния температуры на изменение "структурируемости" их буферных растворов, содержащих аминокислоту.


Хеплер [48] предложил подход на основе анализа знака производной предельной молярной расширяемости по температуре $(\partial E_{\phi}{}^{\circ}/\partial T)_{p} = (\partial^{2}V_{\phi}{}^{\circ}/\partial T^{2})_{p}$ для оценки структурно-образующей (положительный знак) или структурно-разрушающей (отрицательный знак) способности растворенного вещества в системах с фиксированным растворителем, используя термодинамическое соотношение:

$$(\partial C^{\circ}_{p}/\partial P)_{T} = -T(\partial^{2}V^{\circ}_{\varphi}/\partial T^{2})_{p}. \tag{6}$$

Полученные положительные значения ($\partial E_{\alpha}^{\ o}$) $\partial T)_{p}$, приведенные в табл. 5, свидетельствуют о склонности изомеров пиридинмонокарбоновой кислоты к укреплению структуры растворителя (His – буфер), прежде всего, за счет образования молекулярного комплекса между His и изомерами РуСООН, причем наблюдается тенденция усиления их воздействия на структуру буферного раствора в ряду $PA \rightarrow NA \rightarrow INA$. Чем более структурирована жидкость, тем больше положительная величина $(\partial E_{\phi}^{\text{ o}}/\partial T)_{\text{p}}$. Таким образом, INA проявляет наиболее структурно-образующие свойства в системе (INA — His — буфер). Следует отметить, что в случае бинарной системы (РуСООН буфер) изомеры РуСООН оказывают структурно-разрушающее воздействие на буферный раствор, о чем свидетельствуют полученные ранее отрицательные значения $(\partial E_{\varphi}^{\circ}/\partial T)_{p}$ [28].

ЗАКЛЮЧЕНИЕ

В данной работе определены кажущиеся молярные объемы (V_{ϕ}) и предельные кажущиеся молярные объемы при бесконечном разбавлении (V_{ϕ}^{o}) трех изомеров РуСООН — никотиновой (NA), пиколиновой (PA) и изоникотиновой (INA) кислот в буферном растворе с добавками L-гистидина (фиксированной концентрации), а также вычислены предельные кажущиеся молярные объемы их переноса ($\Delta_{tr}V_{\phi}^{\text{o}}$) из чистого буфера в буферный раствор аминокислоты, исходя из экспериментальных измерений плотности в интервале концентраций ($\sim 0.007-0.032$ моль кг $^{-1}$) притемпературах: 288.15, 293.15, 298.15, 303.15, 308.15 и 313.15 К. Показано, что нелинейный характер концентрационных зависимостей V_{ϕ} =f(m) в тройных системах:

Рис. 4. Температурные зависимости предельных кажущихся молярных объемов ${}^{\phi}V^{\circ}$ изомеров пиридинкарбоновой кислоты в буферном растворе (рН 7.4), содержащем L-гистидин: PA — His — буфер (I), INA — His — буфер (I), INA — His — буфер (I).

Таблица 5. Значения температурной производной предельной кажущейся молярной расширяемости $(\partial E_{\varphi}^{\ o}/\partial T)_p$ для пиридинкарбоновых кислот в водном буферном растворе (рН 7.4), содержащем аминокислоту L-гистидин (His)

Система	$(\partial E_{\varphi}^{\circ}/\partial T)_{p} = (\partial^{2}V_{\varphi}^{\circ}/\partial T^{2})_{p},$ см ³ моль ⁻¹ K ⁻²
PA — His — буфер	0.0161±0.0012
NA — His — буфер	0.0170 ± 0.0015
INA — His — буфер	0.0179±0.0011

NA — His — буфер, PA — His — буфер и INA — His — буфер отражает процесс образования молекулярного комплекса со стехиометрией His к РуСООН как ~1:2. Получены положительные значения $V_{\phi}^{\rm o}$ и $\Delta_{tr}V\phi^{\rm o}$, которые позволяют говорить о существенном вкладе электростатических, сольватационных эффектов и водородных связей во взаимодействие между растворенными веществами.

Определены предельные кажущиеся молярные расширяемости $E_{\phi}{}^{\rm o}=(\partial V_{\phi}{}^{\rm o}/\partial T)_{\rm p}$ и их производные по температуре $(\partial E_{\phi}{}^{\rm o}/\partial T)_{\rm p}=(\partial^2 V_{\phi}{}^{\rm o}/\partial T^2)_{\rm p}$ при бесконечном разбавлении для изомеров РуСООН в исследуемых растворах с добавками аминокислоты. Полученные положительные значения $E_{\phi}{}^{\rm o}$ повышаются с ростом температуры, что может быть обусловлено конкурирующим действием электрострикционного вклада (дегидратацией цвиттерионов аминокислоты и анионных форм изомеров РуСООН при их взаимодействии) и вклада

от гидрофобной гидратации образуемого молекулярного комплекса между Ніѕ и РуСООН. Эффекты структурной изомерии молекул РуСООН на их взаимодействия с His проявляются в изменении значений E_{ω}^{o} в ряду PA < INA < NA, что позволяет рассматривать растворы PA — His — буфер и INA – His – буфер более структурированными системами, чем раствор NA – His – буфер. Получены положительные значения параметра $(\partial E_{\sigma}{}^{\rm o}/\partial T)_{\rm p}$, которые свидетельствуют о структурно-укрепляющем эффекте исследуемых изомеров РуСООН на буферные растворы, содержащие L-гистидин (His), вследствие образования молекулярных комплексов между ними, что отличает их от чистого буфера без добавок аминокислоты, для которого значения $(\partial E_{0}^{o}/\partial T)_{n}$ отрицательны для всех трех пиридинкарбоновых кислот. Таким образом, добавление L-гистидина к бинарным системам PyCOOH – буфер способствует укреплению структуры раствора, причем такое воздействие усиливается в ряду РА $NA \rightarrow INA$.

Измерения плотности выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований" ИХР РАН (http://www.isc-ras.ru/ru/struktura/ckp).

Работа выполнена в рамках фундаментальных научных исследований ИХР РАН по теме № 122040500040-6 Минобрнауки России.

СПИСОК ЛИТЕРАТУРЫ

- Ramesh G., Reddy B.V. // J. Mol. Struct. 2018.
 V. 1160. P. 271.
- 2. Gille A., Bodor E.T., Ahmed K. et al. // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79.
- 3. *Zhang Y.* // Annu. Rev. Pharmacol. Toxicol. 2005. V. 45. P. 529.
- 4. *Zolin V.F.*, *Puntus L.N.*, *Tsaryuk V.I. et al.* // J. Alloys Comp. 2004. V. 380. P. 279.
- Seifriz I., Konzen M., Paula M.M.S. et al. // J. Inorg. Biochem. 1999. V. 76. P. 153.
- 6. *Li W.*, *Wang X.-L.*, *Song X.-Y. et al.* // J. Mol. Struct. 2008. V. 885. P. 1.
- 7. *Lee S.M.*, *Ryu S.K.*, *Jung C.H. et al.* // Carbon 2002. V. 40. P. 329.
- 8. Westermark K., Rensmo H., Lees A.C. et al. // J. Phys. Chem. B. 2002. V. 106. P. 10108.
- Shohayeb S.M., Mohamed R.G., Moustafa H. et al. // J. Mol. Struct. 2016. V. 1119. P. 442.
- Terekhova I.V., De Lisi R., Lazzara G. et al. // J. Therm. Anal. Cal. 2008. V. 92. P. 285.
- 11. Tyunina E. Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics 2022. V. 171. P. 106809.
- 12. Tyunina E. Yu., Krutova O.N., Lytkin A.I. // Thermochimica Acta 2020. V. 690. P. 178704.

- Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148.
- 14. Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. Биоорганическая химия. М.: Просвещение, 2010. 416 с. [Tyukavkina N.A., Baukov Yu.I., Zurabayn S.A. Bioorganic Chemistry. Moscow: Prosveshenie, 2010]
- Chemistry and biochemistry of the amino acids. / Ed. By G.C. Barret, Chapman and Hall, London-N.Y.; 1985.
- Schneider F. // Angew. Chem., Int. Ed. Engl. 1978.
 V. 17. P. 583. DOI: 10.1002/anie.197805831
- 17. Чернова Р.К., Варыгина О.В., Березкина Н.С. // Изв. Саратовского ун-та. Нов. Сер. Сер. Химия. Биология. Экология. 2015. Т. 15. № 4. С. 15. DOI: 10.18500/1816-9775-2015-15-4-15-21.
- 18. Tyunina E. Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics. 2021. V. 161. P. 106552.
- 19. *Баделин В.Г., Тарасова Г.Н., Тюнина Е.Ю. и др. //* Изв. Вузов. Химия и хим. технология. 2018. Т. 61. Вып. 8. С. 10–16. [*Badelin V.G., Tarasova G.N., Tyunina E. Yu.et al. //* Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N8. P. 10.]
- Han F., Chalikian T.V. // J. Am. Chem. Soc. 2003.
 V. 125. P. 7219. doi: 10.1021/ja030068p
- 21. *Gurney R.W.* Ionic Processes in Solution. New York: McGraw Hill, 1953.
- 22. Tyunina E. Yu., Badelin V.G., Mezhevoi I.N. // J. Chem. Thermodynamics. 2019. V. 131. P. 40
- 23. *Тюнина Е.Ю., Баделин В.Г., Курицына А.А.* // Журн. физ. химии. 2020. Том 94. № 4. С. 557. [*Tyunina E. Yu., Badelin V.G., Kuritsyna A.A.* // Russ. J. Phys. Chem. A. 2020. Vol. 94. No.4. P. 557.]
- 24. *Lytkin A.I.*, *Badelin V.G.*, *Krutova O.N. et al.* // Russ. J. Gen. Chem. 2019. V. 89. P. 2235.
- 25. *Харнед Г., Оуэн Б.* Физическая химия растворов электролитов. М.: изд-во ИЛ, 1952 [H.S. Harned, B.B. Owen. The physical chemistry of electrolytic solutions. New York, 1950]
- 26. Теоретические и экспериментальные методы химии растворов (Проблемы химии растворов) / отв. ред. А.Ю. Цивадзе. М.: Проспект, 2011. 688 с.
- 27. *Rani R., Rajput Sh., Sharma K. et al.* // Mol. Physics 2022. V. 120. P. e1992029. https://doi.org/10.1080/00268976.2021.1992029
- 28. *Tyunina E. Yu.*, *Tarasova G.N.* // Russ. J. Phys. Chem. A. 2024. V. 98. № 3. В печати.
- 29. Zielenkiewicz W., Pietraszkiewicz O., Wszelaka-Rylic M. et al. // J. Solution Chem. 1998. V. 27. P. 121.
- 30. *Terekhova I.V.*, *Kulikov O.*V. // Mendeleev Comm. 2002. V. 12. P. 111. https://doi.org/10.1070/MC2002v012n03ABEH001571
- 31. *Jamal M.A., Khosa M.K., Rashad M. et al.* // Food Chem. 2014. V. 146. P. 460. https://doi.org/10.1016/j.foodchem.2013.09.076

- 32. *Kumar H.*, *Behal I.* // J. Chem. Eng. Data. 2016. V. 61. P. 3740. https://doi.org/10.1021/acs.jced.6b00168
- 33. *Arsule A.D.*, *Sawale R.T.*, *Kalyankar T.M. et al.* // J. Solution Chem. 2020. V. 49. P. 83. https://doi.org/10.1007/s10953-019-00945-4
- 34. *Тюнина Е.Ю., Тарасова Г.Н., Дунаева В.В.* // Журн. физ. химии. 2022. Т. 96. № 1. С. 76. [*Tyunina E. Yu., Tarasova G.N., Dunaeva V.V.* // Russ. J. Phys. Chem. A. 2022. V. 96. P. 98.]
- 35. *Nain A.K.* // J. Mol. Liq. 2020. V. 315. P. 113736. https://doi.org/10.1016/j.molliq.2020.113736
- 36. *Gupta J., Nain A.K.* // J. Chem. Thermodynamics 2019. V. 135. P. 9. https://doi.org/10.1016/j.jct.2019.03.011
- Warmi'nska D., Kloskowski A. // J. Chem. Thermodynamics 2023. V. 187. P. 107148. https://doi.org/10.1016/j.jct.2023.107148
- 38. *Franks F*. Water: A comprehensive treatise. V. 3. New York: Plenum Press., 1973.
- Tyunina E. Yu., Badelin V.G., Mezhevoi I.N. et al. // J. Mol. Liq. 2015. V. 211. P. 494.

- 40. Баделин В.Г., Тюнина Е.Ю., Межевой И.Н. и др. // Журн. физ. химии. 2015. Том 89. № 12. С. 1884. [Badeline V.G., Tyunina E. Yu., Mezhevoi I.N.et al. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 2229.]
- 41. *Тюнина Е.Ю., Баделин В.Г., Тарасова Г.Н.* // Журн. физ. химии. 2015. Т. 89. № 9. С. 1407. [*Tyunina E. Yu., Badelin V.G., Tarasova G.N.* // Russ. J. Phys. Chem. A. 2015. V. 89. P. 1595].
- 42. *Parmar M.L., Banyal D.S.* // Indian J. Chem. 2005. V. 44A. P. 1582.
- Roy M.N., Sarkar K., Sinha A. // J. Solution Chem. 2014. V. 43. P. 2212. DOI 10.1007/s10953-014-0267-z
- 44. *Millero F.J.* in: Structure and Transport Processes in Water and Aqueous Solutions, edited by R.A. Horne (Wiley Interscience, New York) 1971. Chap. 15., p. 622.
- 45. Sarkar A., Pahaman H., Singha U.K. et al. // Indian J. Adv. Chem. Sci. 2017. V. 5(4). P. 230.
- 46. *Dhondge S.S., Zodape S.P., Parwate D.V.* // J. Chem. Thermodynamics. 2012. V. 48. P. 207.
- Gardas R.L., Dagade D.H., Coutinho J.A.P. et al. // J. Phys. Chem. B. 2008. V. 112. P. 3380.
- 48. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.