———— ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ **——**

УДК: 541.11:536.7

ТЕРМОДИНАМИКА КОМПЛЕКСООБРАЗОВАНИЯ ИОНОВ ЦЕРИЯ(III) И ЛАНТАНА(III) С ГЛИЦИНОМ И ЭТИЛЕНДИАМИНДИЯНТАРНОЙ КИСЛОТОЙ В ВОДНЫХ РАСТВОРАХ

© 2024 г. О. Н. Крутова^а, П.Д. Крутов^{а, *}, С.А. Бычкова^а, В.В. Черников^а, М.И. Базанов^а, Е.Е. Киптикова^а

^аИвановский государственный химико-технологический университет, Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru
Поступила в редакцию 19.10.2023 г.
После доработки 20.12.2023 г.
Принята к публикации 29.12.2023 г.

Потенциометрическим и калориметрическим методами изучены системы Ce^{3+} -глицин—этилендиаминдиянтарная кислота и La^{3+} -глицин— этилендиаминдиянтарная кислота в водном растворе при $T=298.15~\mathrm{K}~\mathrm{(KNO_3)}$. Установлено образование смешаннолигандного комплекса, определены термодинамические характеристики ($\Delta_r H, \Delta_r G, \Delta_r S$) реакции его образования.

Ключевые слова: водный раствор, комплекс, термодинамические характеристики, потенциометрические и калориметрические методы

DOI: 10.31857/S0044453724100029, **EDN:** NMKSUT

Образование смешенных комплесов лантаноидов с комплексонами и аминокислотами представляет интерес с позиции бионеорганической химии, так как ионы Ln(III) и их комплексы находят широкое применение в качестве люминесцентных меток и парамагнитных зондов в медицине при диагностике различных заболеваний. Изучение совместимости лигандов в смешанных комплексах состава MLY, где L и Y – аминокислоты и комплексоны представляет интерес в связи с их научным и практическим значением [1-3]. Информацию о факторах, влияющих на совместимость двух разных лигандов в одной координационной сфере центрального иона, можно получить из энтальпийной и энтропийной характеристик реакций. Целью настоящей работе является потенциометрическое и калориметрическое изучение процессов комплексообразования Ce^{3+} с глицином (Y^{-}) и этилендиаминдиянтарной кислотой (L4⁻) и La³⁺ с глицином (Y-) и этилендиаминдиянтарной кислотой $(L4^{-})$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Препарат глицин фирмы "Sigma" чистотой 99.9% дополнительной очистке не подвергали. Растворы готовили по точной навеске. Для приготовления растворов $Ce(NO_3)_3$ и $La(NO_3)_3$ использовали препараты марки "х.ч.", концентрации устанавливали комплексонометрически. Заданное

значение ионной силы (I=0.2) поддерживали с помощью нитрата калия марки "х.ч.". Титрантом служил 0.1 М раствор HNO₃. 0.1 М раствор HNO₃ был приготовлен из фиксанала, концентрация устанавливали по стандартному раствору КОН. Бескарбонатный раствор КОН и раствор HNO₃ приготавливали из реактива марки "х.ч." по обычной методике [4]. Концентрация растворов этилендиаминдиянтарной кислоты (ЭДДЯ) изменялась от 1×10^{-2} до 2.5×10^{-3} моль/л. Исследования проводили при соотношениях M:L:Y = 1:1:1; 2:2:1; 4:1:4.

Потенциометрическое титрование проходило по стандартной методике [5]. Температуру 298.15 К потенциометрической ячейки, титранта и электрода поддерживали с точностью ± 0.10 К с помощью термостата LOIP и воздушного.

Градуировку стеклянного электрода проводили по следующей методике. Для определения нернстовского коэффициента η проводили измерения ЭДС в буферных растворах с рН 1.68, 4.01, 6.86 и 9.18. При расчете по методу наименьших квадратов эта величина составила $\eta = 0.05851$ В/ед. рН. Значение $E^{\circ}_{каж}$ определяли по стандартному раствору соляной кислоты с концентрацией 0.01 моль/л при заданном значении ионной силы до и после каждого опыта. Если значения ЭДС различались между собой более, чем на 0.001 В, то опыт отбрасывали. Значение потенциала считалось установившимся, если измеряемое значение ЭДС не изменялось в пределах 0.1 мВ в течение 5 мин.

Полученные при обработке значения $E_{\text{каж}}^{\circ}$ и η были использованы для расчета р H_{c} растворов по уравнению:

$$pH_{c} = \frac{E^{\circ}_{Kax} - E}{n},$$

где $E^{\circ}_{\text{каж}}$ и E — кажущийся стандартный потенциал стеклянного электрода при I = const и экспериментальное значение ЭДС соответственно.

Экспериментальные данные обрабатывали по универсальной программе "PHMETR", предназначенной для расчета констант равновесия с произвольным числом реакций по измеренной равновесной концентрации одной из частиц [6]. Кривые потенциометрического титрования представлены на рис. 1 и в таблице экспериментальных данных табл. 1.

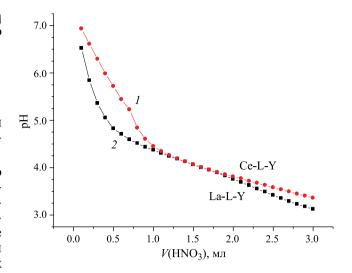
Измерения проводились в калориметре с изотермической оболочкой, снабженном реакционным сосудом объемом $60~{\rm cm}^3$, электрической градуировкой при $T=(293.15-308.15)\pm0.01~{\rm K}$ и $P=100.5\pm0.7~{\rm к}$ Па и автоматической регистрацией температуры [7]. Работу установки проверяли по интегральной энтальпии растворения кристаллического хлорида калия в воде и считали годной для измерения, если определяемое в ней значение $\Delta_{\rm sol}H(\infty {\rm H_2O})=17.25\pm0.06~{\rm k} \mbox{Дж/моль}$ отличалось от нормативного $\Delta_{\rm sol}H(\infty {\rm H_2O})=17.22\pm0.04~{\rm k} \mbox{Дж/моль}$ на 0.3% [8]. Доверительный интервал среднего значения ΔH рассчитывали с вероятностью 0.95.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Расчет констант устойчивости смешанных комплексов исследуемых металлов проводили с учетом протекания следующих процессов:

$$L^{4-} + H^+ \leftrightarrow HL^{3-}, \tag{1}$$

$$L^{4-} + 2H^+ \leftrightarrow H_2L^{2-} \tag{2}$$


$$L^{4-} + 3H^+ \leftrightarrow H_3L^-, \tag{3}$$

$$L^{4-} + 4H^+ \leftrightarrow H_4L, \tag{4}$$

$$Y^- + H^+ \leftrightarrow HY, \tag{5}$$

$$Y^{-} + 2H^{+} \leftrightarrow H_{2}Y^{+}, \tag{6}$$

$$M^{3+} + L^{4-} \leftrightarrow ML^{-}$$
,

Рис. 1. Кривые потенциометрического титрования систем Ce–L–Y (\it{I}) и La–L–Y ($\it{2}$) при соотношениях 2:1:2

$$M^{3+} + L^{4-} + H^+ \leftrightarrow MHL, \tag{8}$$

$$M^{3+} + L^{4-} \leftrightarrow ML^{-}, \tag{9}$$

$$M^{3+} + 2L^{4-} \leftrightarrow ML_2^{5-},$$
 (10)

$$H^+ + OH^- \leftrightarrow H_2O,$$
 (11)

$$M^{2+} + HOH \leftrightarrow MOH^+ + H^+,$$
 (12)

$$M^{3+} + L^{4-} + Y^{-} \leftrightarrow MLY^{2-},$$
 (13)

$$M^{3+} + L^{4-} + Y^{-} + H^{+} \leftrightarrow MHLY^{-}$$
. (14)

В расчетах использовали константы диссоциации ЭДДЯ, полученные в работе [9] и пересчитанные назначение ионной силы раствора I=0.2: $pK_1=3.00$, $pK_2=3.77$, $pK_3=6.93$, $pK_4=10.11$; и константы диссоциации глицина, полученные в работе [10]: $pK_1=2.32$, $pK_2=9.60$ при I=0.2 (KCl). Константы устойчивости комплексов церия с глицином взяли из работы [11]: $\lg K_1=4.42$, $\lg \beta_2=7.94$. Константы устойчивости комплексов ЭДДЯ с исследуемыми металлами, которые получили в нашей лаборатории, представлены в табл. 2. Учитывали также возможность гидролиза ионов исследуемых металлов [12]. Константа ионизации воды на "фоне" KNO $_3$ была взята из [13].

Критерием адекватности выбранной моде-(7) ли служили различия между рассчитанными

Таблица 1. Экспериментальными данные потенциометрического титрования системы Се-ЭДДЯ-Глицин = 2-1-2

<i>V</i> , мл	<i>E</i> , B	pН	$C_{\rm ЭДДЯ} \times 10^{-3}$	$C_{\mathrm{Gly}} \times 10^{-3}$	$C_{\text{Ce}}^{3+} \times 10^{-3}$	C_{KOH}	$C_{ m HNO3}$
			моль/л				
0.1	-3.6	6.658	4.976	9.924	9.968	0.022058	0.00035
0.2	13.5	6.359	4.956	9.882	9.927	0.021966	0.000697
0.3	27.1	6.121	4.935	9.842	9.886	0.021876	0.001042
0.4	38.7	5.918	4.915	9.801	9.845	0.021786	0.001383
0.5	55.2	5.630	4.895	9.761	9.805	0.021696	0.001722
0.6	72.8	5.322	4.875	9.721	9.765	0.021608	0.002058
0.7	93.4	4.962	4.855	9.682	9.725	0.02152	0.002391
0.8	110	4.671	4.835	9.643	9.686	0.021433	0.002722
0.9	120.6	4.486	4.816	9.604	9.647	0.021347	0.00305
1	127.2	4.371	4.796	9.565	9.608	0.021261	0.003375
1.1	132.5	4.278	4.777	9.527	9.570	0.021176	0.003698
1.2	136.8	4.203	4.758	9.489	9.532	0.021092	0.004018
1.3	140.8	4.133	4.739	9.451	9.494	0.021008	0.004336
1.4	144	4.077	4.721	9.414	9.4573	0.020925	0.004651
1.5	147.4	4.017	4.702	9.377	9.419	0.020843	0.004963
1.6	150.4	3.965	4.684	9.340	9.382	0.020761	0.005273
1.7	153.4	3.913	4.665	9.304	9.346	0.02068	0.005581
1.8	156.1	3.865	4.647	9.268	9.309	0.0206	0.005886
1.9	158.7	3.820	4.629	9.232	9.273	0.02052	0.006189
2	161.5	3.771	4.611	9.196	9.238	0.020441	0.00649
2.1	163.9	3.729	4.594	9.161	9.202	0.020362	0.006788
2.2	166.4	3.685	4.576	9.126	9.167	0.020284	0.007084
2.3	168.2	3.654	4.559	9.091	9.132	0.020207	0.007378
2.4	171.6	3.594	4.541	9.056	9.097	0.02013	0.00767
2.5	173.9	3.554	4.524	9.022	9.063	0.020054	0.007959
2.6	176.5	3.509	4.507	8.988	9.029	0.019978	0.008246
2.7	179	3.465	4.490	8.954	8.995	0.019903	0.008531
2.8	181.5	3.421	4.473	8.921	8.961	0.019829	0.008814
2.9	184	3.378	4.457	8.888	8.928	0.019755	0.009095
3	186.5	3.334	4.440	8.854	8.894	0.019682	0.009373

и экспериментальными величинами рН. Они были знакопеременными и не превышали погрешности эксперимента.

Расчеты показали, что в системе Ce(III)–L–Y образуются комплексы $CeLY^{2-}$ и $CeHLY^{-}$, а La(III)–L–Y – комплексы состава $LaLY^{2-}$, $LaHLY^{-}$ и LaH_2LY . Значения констант устойчивости образующихся комплексов приведены в табл. 3.

Были определены тепловые эффекты смешения растворов комплексонатов лантаноидов, содержащих фоновый электролит (нитрат калия), со щелочными растворами дополнительного лиганда (глицина) рН_{исх} 10.2. Рабочие растворы глицина и ЭДДЯ готовили по точной навеске препаратов,

Таблица 2. Константы устойчивости (lg β) комплексов ЭДДЯ с Ce 3^+ и La 3^+ при T=298.15 K, I=0.2

Металл	$lg\beta(ML^-)$	lgβ(MHL)
Ce ³⁺	11.94	16.13
La ³⁺	10.80	15.20

для создания pH раствора добавляли необходимый объем стандартного раствора КОН. В калориметрический стакан помещали раствор нитрата церия(III) (с концентрацией 0.0049736моль/л раствора) или нитрата лантана(III) (с концентрацией

Металл	Соотношение	$\lg K(MLY^{2-})$	lgK(MHLY ⁻)	$\lg K(MH_2LY)$
Ce ³⁺	1:1:1 2:1:2	17.25±0.08 17.16±0.09	- 23.71±0.15	_ _
La ³⁺	1:1:1 2:1:2 4:1:4	19.39±0.08 19.18±0.10	22.55±0.08 23.09±0.10 23.50±0.10	28.84±.09 28.55±0.10 28.13±0.12

Таблица 3. Константы устойчивости (lg β) комплексов ЭДДЯ и глицина с Ce³⁺ и La³⁺ при T = 298.15 K, I = 0.2

Таблица 4. Тепловые эффекты взаимодействия раствора $Ce(NO_3)_3$ в комплексоне с растворами KPep при 298K, на фоне нитрата калия

m_{KGly} , Γ	$-\Delta_{ m mix}~H$, кДж/моль	$m_{ ext{KGly}}$, Γ	$-\Delta_{ m dil}H$, кДж/моль				
<i>I</i> =0.2							
0.1012	122.00±0.25	0.1013	12.20±0.26				
0.1035	123.41±0.27	0.1033	12.33±0.28				
0.1061	132.62±0.25	0.1052	12.65±0.25				
0.2125	133.31±0.28	0.2126	13.30±0.26				
0.2235	134.42±0.28	0.2225	13.45±0.29				
0.2167	135.76±0.29	0.2187	13.36±0.26				
0.3122	136.45±0.25	0.3112	13.12±0.26				
0.3101	134.22±0.21	0.3111	13.69±0.22				
0.3997	136.50±0.29	0.4007	13.80±0.29				
0.4272	135.12±0.25	0.4372	14.14±0.29				
0.4352	145.42±0.25	0.4352	14.32±0.29				
0.4661	143.16±0.22	0.4681	14.96±0.22				

0.0051736 моль/л раствора) объемом 40.02 мл с заданным значением ионной силы и растворе комплексона. В ампуле находился раствор KGly (исходной концентрации 0.4122 моль/кг раствора). Были также измерены теплоты разведения KGly в растворах фонового электролита и раствора комплексона. Экспериментальные данные по суммарным тепловым эффектам для исследуемой системы представлены в табл. 4.

На основании экспериментально полученного массива данных, рассчитывали теплоты реакций комплексообразования, удовлетворяющие минимуму функции:

$$F = \sum_{i=1}^{n} (\Delta_{\rm r} H_{\rm i}^{\rm 9KC\Pi} - \Delta_{\rm r} H_{\rm i}^{\rm pact}) \cdot \omega_{\rm i}^2 \to \min. \quad (15)$$

Экспериментальный тепловой эффект взаимодействия растворов Ce(III) или La(III), глицина и ЭДДЯ имеет вид:

$$\Delta_{\text{mix}}H - \Delta_{\text{dil}}H = \alpha_1 \Delta_r H_{\text{MeIV}} + \Sigma \alpha_i \Delta_r H_i, \quad (16)$$

где $\Delta_{\text{mix}}H$ — тепловой эффект взаимодействия растворов $\text{Ce}(\text{NO}_3)_3$ с растворами глицина и ЭДДЯ, имеющими заданное значение рН, $\Delta_{\text{dil}}H$ — теплота разведения $\text{Ce}(\text{NO}_3)_3$ в растворах фонового электролита, α_1 — полнота протекания процесса (13), $\Sigma\alpha_i\Delta_rH_i$, — вклад одновременно протекающих побочных процессов (1)—(12), (14) в измеряемый тепловой эффект; n — число опытов; ω_i — весовой множитель, определяемый по соотношению:

$$\omega_i = A / \sigma_i^2, \tag{17}$$

где A — произвольное число, позволяющее выбрать удобное для расчета значение ω_i ; σ_i^2 — дисперсия.

По экспериментальным данным (табл. 3) были рассчитаны среднеарифметические значения тепловых эффектов по результатам трех- четырех опытов. Для расчета доверительного интервала среднего значения ΔH по статистике Стьюдента t_{α} =3.18 был взят при доверительной вероятности 0.95. Необходимые для расчета энтальпии процессов кислотно-основного взаимодействия в растворах глицина и ЭДДЯ взяты из работ [14, 15]. Энтальпию образования

Процесс	lgβ	$-\Delta_{ m r}H$, кДж/моль	$-\Delta_{ m r}G$, кДж/моль	$\Delta_{r}S$, Дж/(мольК)
$Ce^{3+} + L^{4-} + Y^{-} \leftrightarrow CeLY^{2-}$	17.16±0.09	82.33±0.30	97.95±0.51	52.4±0.8
$La^{3+} + L^{4-} + Y^- \leftrightarrow LaLY^{2-}$	19.18±0.10	80.21±0.30	109.48 ± 0.52	98.2±0.8
$Ce^{3+} + L^{4-} + Y^{-} + H^{+} \leftrightarrow CeHLY^{-}$	23.71±0.15	84.57±0.30	135.34 ± 0.56	170.3±0.8
$La^{3+} + L^{4-} + Y^{-} + H^{+} \leftrightarrow LaHLY^{-}$	23.09±0.10	83.92±0.30	131.79±0.52	160.6±0.8
$La^{3+} + L^{4-} + Y^{-} + 2H^{+} \leftrightarrow LaH_{2}LY$	28.55±0.10	85.86±0.30	162.96±0.52	258.2±0.8

Таблица 5. Термодинамические характеристики реакций образования комплексов ЭДДЯ и глицина с $Ce3^+$ и $La3^+$ при T=298.15 K; I=0.2

комплекса $MeLY^{2-}$ рассчитывали по универсальной программе HEAT [16] путем минимизации критериальной функции F по искомым параметрам. Рассчитанные энтальпии приведены в табл. 5.

Катионы редкоземельных элементов могут давать достаточно прочные соединения с аминополикарбоновыми кислотами. Катионы лантаноидов проявляют высокие координационные числа, следовательно насыщение координационной емкости катиона за счет одной молекулы комплексонов достигаться не будет. Дополнительный лиганд аминокислоты, может служить элементом достройки структуры комплекса с максимальным использованием координационной емкости катиона. Изучаемые нами реакции сопровождаются экзоэфектом и положительным изменением энтропии. В работах [17-20], авторы связывают аналогичные термродинамические данные с вытеснением молекул воды из внутренней координационной сферы LnEdta $(H_2O)_n$ (n=2,3) при присоединении второго лиганда (аминокислоты). Авторы отмечают, что образование комплексов не сопровождается уменьшением дентатности основного лиганда Edta. Аналогичные реакции с участием координационно насыщенных комплексонатов Ni, Cu, Zn и Cd сопровождаются резко отрицательным изменением энтропии, что обусловлено уменьшением дентатности этилендиаминтетраацетата.

Работа выполнена в Научно-исследовательском институте термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть), проект № FZZW-2023-0008. Исследование выполнено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГУХТ (при поддержке Министерства науки и высшего образования РФ, грант № (075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Горболетова Г.Г., Метлин А.А., Бычкова С.А.* // Журн. физ. химии. 2018. Т. 92. № 9. С. 1426.
- 2. *Чернова С.П., Трубачева Л.В.* // Аналитика и контроль. 2006. Т. 10. № 3–4. С. 336.

- 3. *Prakash O., Kumar R., Kumar R. et al.* // Eur. J. Med. Chem. 2007. V. 42. P. 868.
- 4. *Коростелев П.П.* Приготовление растворов для химико-аналитических работ. М.: Наука, 1964. С. 235.
- 5. *Лыткин А.И., Крутова О.Н., Черников В.В., и др.//* Журн. физ. химии. 2022. Т. 96. № 11. С. 1609.
- 6. Бородин В.А., Васильев В.П., Козловский Е.В. // Журн. неорган. химии. 1986. Т. 31. № 1. С.10.
- 7. Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Therm. Anal. Calorim. 2017. T. 130. P. 457.
- 8. *Wadsö I., Goldberg R.N.* // Pure Appl. Chem. 2001. V. 73. P. 1625.
- 9. *Гридчин С.Н., Тукумова Н.В., Литвиненко В.Э., и др.* // Изв. вузов. Химия и хим. технология. 2007. Т. 50. № 10. С. 32.
- 10. Farkas E., Enyedy E., Micera G., Garribba E. // Polyhedron. 2000. V. 19. P. 1727.
- Patel A., Joshi J. // J. Indian Chem. Soc. 1996. V. 73.
 P. 71.
- 12. *Назаренко В.А., Антонович В.П., Невская Е.М.* Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1979. 192 с.
- 13. *Васильев В.П., Лобанов Г.А.* // Изв. вузов. Химия и хим. технология. 1969. Т. 12. № 6. С. 740.
- 14. *Васильев В.П., Кочергина Л.А.* // Журн. общ. химии. 1979. Т. 49. № 9. С 2042.
- 15. *Васильев В.П., Козловский Е.В., Леденков С.Ф.* // Журн. неорган. химии. 1987. Т. 61. № 5. С. 1429.
- 16. *Бородин В.А.*, *Васильев В.П.*, *Козловский Е.В.* // Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- 17. *Титова Е.С., Пырэу Д.Ф., Козловский Е.В.* // Журн. неорган. химии. 2006. Т. 51. № 8. С. 1421.
- 18. Порай-Кошиц М.А., Полынова Т.Н. // Координац. химия. 1984. Т. 10. № 6. С. 725.
- 19. *Кривоногих Т.С., Пырэу Д.Ф., Козловский Е.В.* // Там же. 2010. Т. 36. № 7. С. 555.
- 20. *Кривоногих Т.С., Титова Е.С., Пырэу Д.Ф., Козловский Е.В.* // Журн. неорган. химии. 2011. Т. 56. № 1. С. 132.