Adaptive variability of blood-forming elements in the annual life cycle of ground squirrels Urocitellus undulatus

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this study, changes in all blood formed elements of long-tailed ground squirrel Urocitellus undulatus (n=100) during different periods of their life activity were investigated. The hematological analysis was performed on an automatic veterinary analyser: a indices of leukocytes, platelets and erythrocytes were measured in summer (normothermia, june-july), autumn (preparatory period, october), winter torpid (hypothermia, december-february) and winter active periods (IBA, euthermia, short awakenings between hypothermia stages, december-february). It was shown that the total counts of platelets and leukocytes of ground squirrel increased by ~40 % in autumn compared to summer. During the torpor period, thrombocytosis and leukocytosis were replaced by extreme thrombocytopenia (~90 %) and leukopenia (~80 %). On awakening, the indices reached “summer” values, except for a slightly increased mean platelets volume. In autumn, an insignificant erythrocytosis (~10 %) was observed, which, together with changes in other parameters, could indicate an unexpressed autumn hypoxia. In torpor and in winter euthermia, the erythrocyte indices were no difference with summer control values; however, the presence of atypical forms of erythrocytes was detected both in the autumn period of preparation for hibernation and during hibernation. The results are discussed in the context of the adaptation of the blood-forming elements of the ground squirrel to the extreme conditions of hibernation and are valuable for the study of the adaptive abilities of homoeothermic animals and humans.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Teplova

Institute of Cell Biophysics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: p.o.teplova@gmail.com
Ресей, Pushchino

N. Komelina

Institute of Cell Biophysics, Russian Academy of Sciences

Email: p.o.teplova@gmail.com
Ресей, Pushchino

A. Yegorov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: p.o.teplova@gmail.com
Ресей, Pushchino

K. Lizorkina

Institute of Cell Biophysics, Russian Academy of Sciences

Email: p.o.teplova@gmail.com
Ресей, Pushchino

N. Zakharova

Institute of Cell Biophysics, Russian Academy of Sciences

Email: p.o.teplova@gmail.com
Ресей, Pushchino

Әдебиет тізімі

  1. Franco M, Contreras C, Nespolo R (2013) Profound changes in blood parameters during torpor in a South American marsupial. Comp Biochem Physiol Mol Integr Physiol 166: 338–342. https://doi.org/10.1016/j.cbpa.2013.07.010
  2. Drew KL, Harris MB, LaManna JC, Smith MA, Zhu XW, Ma YL (2004) Hypoxia tolerance in mammalian heterotherms. J Exp Biol 207: 3155–3162. https://doi.org/10.1242/jeb.01114
  3. Bieber C, Lebl K, Stalder G, Geiser F, Ruf T (2014) Body mass dependent use of hibernation: why not prolong the active season, if they can? Functional Ecology 28: 167–177. https://doi.org/10.1111/1365-2435.12173
  4. Landes J, Pavard S, Henry P-Y, Terrien J (2020) Flexibility Is Costly: Hidden Physiological Damage from Seasonal Phenotypic Transitions in Heterothermic Species. Front Physiol 11: 985. https://doi.org/10.3389/fphys.2020.00985
  5. Mohr S, Bagriantsev S, Gracheva E (2020) Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Annu Rev Cell Dev Biol 36: 315–338. https://doi.org/10.1146/annurev-cellbio-012820-095945
  6. Ануфриев АИ (2013) Экологические механизмы температурных адаптаций млекопитающих и зимующих птиц Якутии. Изд-во СО РАН, Новосибирск [Anufriyev AI (2013) Ecological mechanisms of temperature adaptations in mammals and wintering birds of Yakutia. Izd-vo SO RAN. Novosibirsk. (In Russ)].
  7. DeVrij EL, Bouma HR, Henning RH, Cooper ST (2023) Hibernation and hemostasis. Front Physiol 14: 1207003. https://doi.org/10.3389/fphys.2023.1207003
  8. Bouma HR, Carey HV, Kroese FGM (2010) Hibernation: the immune system at rest? J Leukoc Biol 88: 619–624. https://doi.org/10.1189/jlb.0310174
  9. Bouma HR, Strijkstra AM, Boerema, Deelman LE, Epema AH, Hut RA, Kroese FG, Henning RH (2010) Blood cell dynamics during hibernation in the European Ground Squirrel. Vet Immunol Immunopathol 136: 319–323. https://doi.org/10.1016/j.vetimm.2010.03.016
  10. Ануфриев АИ, Охлопков ИМ (2015) Зимняя спячка трех видов Sciuridae в Якутии с температурой тела ниже нуля. Экология 2: 125–133. [Anufriyev AI, Okhlopkov IM (2015) Hibernation of three species of Sciuridae in Yakutia with body temperature below zero. Ekologiya 2: 125–133. (In Russ)]
  11. Захарова НМ (2014) Некоторые особенности разогрева гибернирующих сусликов Spermophilus undulatus при вызванном пробуждении. Фундамент исслед 6: 1401–1405. [Zakharova NM (2014) Some features of warming of hibernating ground squirrels Spermophilus undulatus during induced awakening. Fundament issled 6: 1401–1405. (In Russ)].
  12. (2007) The Handbook of Metabonomics and Metabolomics. Elsevier.
  13. Теплова ПО, Комелина НП, Лизоркина КИ, Захарова НМ (2023) Особенности адаптационных изменений лейкоцитов и тромбоцитов якутских сусликов в предгибернационный осенний период. Биофизика 68: 926–931. [Teplova PO, Komelina NP, Lizorkina KI, Zakharova NM (2023) Characteristics of adaptation changes in leukocytes and platelets of Yakutian ground squirrels in the autumn period before hibernation. Biofizika 68: 926–931. (In Russ)]. https://doi.org/ 10.31857/S0006302923050125
  14. Kuznetsova EV, Feoktistova NY, Naidenko SV, Surov AV, Tikhonova NB, Kozlovskii JuE (2016) Seasonal Changes in Blood Cells and Biochemical Parameters in the Mongolian Hamster (Allocricetulus curtatus). Izv Akad Nauk Ser Biol: 405–411.
  15. Reznik G, Reznik-Schüller H, Emminger A, Mohr U (1975) Comparative studies of blood from hibernating and nonhibernating European hamsters (Cricetus cricetus L). Lab Anim Sci 25: 210–215.
  16. Suomalainen P, Rosokivi V (1973) Studies on the physiology of the hibernating hedgehog. 17. The blood cell count of the hedgehog at different times of the year and in different phases of the hibernating cycle. Ann Acad Sci Fenn Biol 198: 18.
  17. Tøien Ø, Drew KL, Chao Ml, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281: R57283. https://doi.org/10.1152/ajpregu.2001.281.2.R572
  18. Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia". J Cereb Blood Flow Metab 14: 193–205. https://doi.org/10.1038/jcbfm.1994.26
  19. Sahdo B, Evans AL, Arnemo JM, Fröbert O, Särndahl E, Blanc S (2013) Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? Int J Med Sci 10: 508–514. https://doi.org/10.7150/ijms.4476
  20. Iadocicco K, Monteiro LH, Chaui-Berlinck JG (2002) A theoretical model for estimating the margination constant of leukocytes. BMC Physiol 2: 3. https://doi.org/10.1186/1472–6793–2–3
  21. Colditz IG (1985) Margination and emigration of leucocytes. Surv Synth Pathol Res 4: 44–68. https://doi.org/10.1159/000156964
  22. Inkovaara P, Suomalainen P (1973) Studies on the physiology of the hibernating hedgehog. 18. On the leukocyte counts in the hedgehog's intestine and lungs. Ann Acad Sci Fenn Biol 200: 121.
  23. Kurtz CC, Carey HV (2007) Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol 31: 415–428. https://doi.org/10.1016/j.dci.2006.07.003
  24. Yasuma Y, McCarron RM, Spatz M, Hallenbeck JM (1997) Effects of plasma from hibernating ground squirrels on monocyte-endothelial cell adhesive interactions. Am J Physiol 273: R1861–R1869. https://doi.org/10.1152/ajpregu.1997.273.6.R1861
  25. Аксенова ГЕ, Логвинович ОС, Афанасьев ВН, Лизоркина КИ (2023) Параметры клеточного цикла и активность орнитиндекарбоксилазы в красном костном мозге гибернирующих сусликов Urocitellus undulatus. Биофизика 68: 964–972. [Aksenova GE, Logvinovich OS, Afanas'ev VN, Lizorkina KI (2023) Parametry kletochnogo cikla i aktivnost' ornitindekarboksilazy v krasnom kostnom mozge giberniruyushchih suslikov Urocitellus undulatus [Cell cycle parameters and ornithine decarboxylase activity in red bone marrow of hibernating ground squirrels Urocitellus undulatus]. Biofizika 68: 964–972. (In Russ)]. https://doi.org/ 10.31857/S0006302923050174
  26. Hidalgo A, Chilvers ER, Summers C, Koenderman L (2019) The Neutrophil Life Cycle. Trends Immunol 40: 584–597. https://doi.org/10.1016/j.it.2019.04.013
  27. Novoselova EG, Kulikov AV, Glushkova OV, Cherenkov DA, Smirnova GN, Arkhipova LV (2004) Effect of the Transplanted Thymus of Hibernating Ground Squirrels on the Age-Related Thymus Involution in Rats. Dokl Biol Sci 1–6: 272–273.
  28. Brock MA (1960) Production and life span of erythrocytes during hibernation in the golden hamster. Am J Physiol 198: 1181–1186. https://doi.org/10.1152/ajplegacy.1960.198.6.1181
  29. Kumar S, Dikshit M (2019) Metabolic Insight of Neutrophils in Health and Disease. Front Immunol 10: 2099 https://doi.org/10.3389/fimmu.2019.02099
  30. DeVrij EL, Bouma HR, Goris M, Weerman U, de Groot AP, Kuipers J, Giepmans BNG, Henning RH (2021) Reversible thrombocytopenia during hibernation originates from storage and release of platelets in liver sinusoids. J Comp Physiol B191: 603–615. https://doi.org/10.1007/s00360-021-01351-3
  31. Koupenova M, Livada AC, Morrell CN (2022) Platelet and Megakaryocyte Roles in Innate and Adaptive Immunity. Circ Res 130: 288–308. https://doi.org/10.1161/CIRCRESAHA.121.319821
  32. Kovalchuk LA, Mishchenko VA, Chernaya LV, Snit'ko VP, Bolshakov VN (2022) Assessment of Seasonal Variability of the Spectrum of Free Amino Acids in the Blood Plasma of the Boreal Bat Species (Myotis dasycneme Boie, 1825) of the Ural Fauna. Dokl Biochem Biophys 507: 268–272. https://doi.org/10.1134/S1607672922060060
  33. Reddick RL, Poole BL, Penick GD (1973) Thrombocytopenia of hibernation. Mechanism of induction and recovery. Lab Invest 28: 270–278.
  34. Corash L, Chen HY, Levin J, Baker G, Lu H, Mok Y (1987) Regulation of thrombopoiesis: effects of the degree of thrombocytopenia on megakaryocyte ploidy and platelet volume. Blood 70: 177–185.
  35. Winkelmann M, Pfitzer P, Schneider W (1987) Significance of polyploidy in megakaryocytes and other cells in health and tumor disease. Klin Wochenschr 65: 1115–1131. https://doi.org/10.1007/BF01734832.
  36. Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J (2022) Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 13:1025945. https://doi.org/10.3389/fimmu.2022.1025945
  37. Corrons JLV, Casafont LB, Frasnedo EF (2021) Concise review: how do red blood cells born, live, and die? Ann Hematol 100: 2425–2433. https://doi.org/10.1007/s00277-021-04575-z
  38. Cooper S, Sell S, Nelson L, Hawes J, Benrud JA, Kohlnhofer BM, Burmeister BR, Flood VH (2016) Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels. J Comp Physiol B186: 131–139. https://doi.org/10.1007/s00360-015-0941-5
  39. Fedosov DA, Gompper G (2014) White blood cell margination in microcirculation. Soft Matter 10: 2961–2970. https://doi.org/10.1039/c3sm52860j
  40. Fitzgibbon S, Spann AP, Qi QM, Shaqfeh ESG (2015) In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Biophys J 108: 2601–2608. https://doi.org/10.1016/j.bpj.2015.04.013
  41. Pretini V, Koenen MH, Kaestner L Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R (2019) Red Blood Cells: Chasing Interactions. Front Physiol 10: 945. https://doi.org/10.3389/fphys.2019.00945
  42. Tokarev AA, Butylin AA, Ataullakhanov FI (2011) Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J 100: 799–808. https://doi.org/10.1016/j.bpj.2010.12.3740
  43. Израилова ГР, Халилов РА, Адиева АА (2014) Современные подходы к исследованию гипотермии. Фундамент исслед 11:1046–1058. [Izrailova GR, Khalilov RA, Adiyeva AA (2014) Current approaches to hypothermia research. Fundament Issled 11: 1046–1058. (In Russ)].
  44. Передрий НС (1973) Сезонные изменения гематологических показателей у сусликов популяций юга Украины. Вестн зоол 2: 21–25. [Peredriy NS (1973) Seasonal variation of haematological indices in ground squirrel populations of the south of Ukraine. Vestnik Zool 2: 21–25. (In Russ)].
  45. Spurrier WA, Dawe AR (1973) Several blood and circulatory changes in the hibernation of the 13-lined ground squirrel, Citellus tridecemlineatus. Comp Biochem Physiol Comp Physiol 44: 267–282. https://doi.org/10.1016/0300-9629(73)90479-9
  46. Бурых ЭА, Сороко СИ (2014) Компенсаторная роль системы кровообращения при острой гипоксической гипоксии у человека. Экол чел 7:30–36. [Burykh EA, Soroko SI (2014) Compensatory role of the circulatory system in acute hypoxic hypoxia in humans. Hum Ecol 7: 30–36. (In Russ)].
  47. Ануфриев АИ (2008) Механизмы зимней спячки мелких млекопитающих Якутии, Новосибирск. [Anufriyev AI (2008) Mechanisms of winter hibernation in small mammals of Yakutia. Novosibirsk. (In Russ)].
  48. Ma YL, Zhu X, Rivera PM, Tøien Ø, Barnes BM, LaManna JC, Smith MA, Drew KL (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289: R1297–R1306. https://doi.org/10.1152/ajpregu.00260.2005
  49. Reid ME, Mohandas N (2004) Red blood cell blood group antigens: structure and function. Semin Hematol 41: 93–117. https://doi.org/10.1053/j.seminhematol.2004.01.001
  50. Klichkhanov NK, Nikitina ER, Shihamirova ZM, Astaeva MD, Chalabov SI, Krivchenko AI (2021) Erythrocytes of Little Ground Squirrels Undergo Reversible Oxidative Stress During Arousal from Hibernation. Front Physiol 12: 730657. https://doi.org/10.3389/fphys.2021.730657

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Seasonal differences in long-tailed ground squirrels Urocitellus undulatus (by blood parameters) in the space of principal components PC1 and PC2. The percentage of variation in the original variables explained by the corresponding principal component is given. (a) – all groups of animals, (b) – comparison of summer and autumn animals, (c) – comparison of animals in torpor and during winter activity, (d) – comparison of summer and winter active ground squirrels. Designations of points: green circle – summer animals, orange triangle – autumn group, blue star – ground squirrels in torpor, light blue square – IBA, winter activity. Each point describes one ground squirrel by 15 hematological indices, n = 25 for each group (see methods).

Жүктеу (276KB)
3. Fig. 2. Load graph obtained as a result of principal component analysis of blood parameters of the long-tailed ground squirrel Urocitellus undulatus.

Жүктеу (92KB)
4. Fig. 3. Seasonal changes in the leukocyte pool in the peripheral blood of U. undulatus ground squirrels (n = 25 for each season). Values ​​are presented as a box plot, where ● are outliers, * are statistically significant differences with the “summer” group (p <0.05, here and below the Mann–Whitney U test), ns are statistically significant differences (p ≥0.05). WBC – leukocytes; Mon – monocytes; Lymph – lymphocytes; Gran – granulocytes (total neutrophils, basophils and eosinophils).

Жүктеу (122KB)
5. Fig. 4. Seasonal changes in platelets in the peripheral blood of U. undulatus ground squirrels (n = 25 for each season). Values ​​are presented as a box plot, where ● are outliers, * are statistically significant differences between groups (p < 0.05), ns are statistically significant differences (p ≥ 0.05). PLT is the platelet count; PCT is the platelet crit; MPV is the mean platelet volume; PDW is the platelet distribution width by volume.

Жүктеу (126KB)
6. Fig. 5. Seasonal changes in erythrocyte parameters in the peripheral blood of U. undulatus ground squirrels (n = 25 for each season). Values ​​are presented as a box plot, where ● are outliers, * are statistically significant differences between groups (p <0.05), ns are statistically significant differences (p ≥0.05). RBC – erythrocytes; HGB – hemoglobin concentration; HCT – hematocrit; MCV – mean corpuscular volume; MCHC – mean corpuscular hemoglobin concentration; RDW – erythrocyte distribution width.

Жүктеу (166KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>