Model' spinovogo stekla dlya kvantovykh yam GaAs/AlGaAs, legirovannykh nemagnitnymi primesyami, vblizi perekhoda metall–izolyator

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a previous report, we presented experiments which suggested that ferromagnetic ordering of the spins of localized holes in GaAs/AlGaAs quantum wells could be observed when doped with shallow (Be) acceptors at impurity concentrations near the metal-insulator transition. The compensating impurity (Si) was introduced into a narrow region at the center of the barriers [4]. In this paper, we present results from magnetotransport experiments performed on similar structures, but without the compensating impurity (Si). In these samples, the compensation degree is expected to be controlled by the background defects located at the edges of the quantum wells and within the barriers. At low temperatures T ≤ 10 K, we observed isotropic, linear magnetoresistance, anomalous behavior of the Hall effect as a function of the magnetic field, and slow relaxation of resistance after the application of a magnetic field. We explain this anomalous magnetotransport as the manifestation of a ferromagnetic transition or spin glass, originating from indirect spin exchange between localized holes on impurities near the metal-insulator transition. However, we note that perfect disorder, including signs of interspin interactions, leads to unstable configurations. In what follows, we present a model in which we start with this perfect disorder, but apply a procedure to obtain a stable configuration. We show that the resulting spin structure, a “closely packed” structure of “droplets,” can reproduce the features observed in the experiment, particularly isotropic, linear magnetoresistance.

作者简介

N. Agrinskaya

A.F. Ioffe Institute, Russian Academy of Sciences

Email: nina.agrins@mail.ioffe.ru
194021, St. Petersburg, Russia

V. Kozub

A.F. Ioffe Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nina.agrins@mail.ioffe.ru
194021, St. Petersburg, Russia

参考

  1. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).
  2. E. Nielsen and R. N. Bhatt, Phys. Rev. B 82, 195117 (2010).
  3. J. Kundrotas and A. Cerskus, J. Appl. Phys.103, 123108 (2008).
  4. А. В. Шумилин, В. И. Козуб, Н. В. Агринская, Н. Ю. Михайлин, Д. В. Шамшур, ЖЭТФ 159, 915 (2021).
  5. N. V. Agrinskaya, V. I. Kozub, Yu. M. Galperin, and D. V. Shamshur, J. Phys.: Cond. Matt. 20, 395216 (2008).
  6. N. V. Agrinskaya, V. I. Kozub, N. Y. Mikhailin, and D. V. Shamshur, JETP Lett. 105, 484 (2017).
  7. Н. В. Агринская, Н. Ю. Михайлин, Д. В. Шамшур, ЖЭТФ 162, 127 (2022).
  8. A. P. Li, J. F. Wendelken, J. Shen, L. C. Feldman, J. R. Thompson, and H. H. Weitering, Phys. Rev. B72 195205 (2005).
  9. Hui Lin Zhao, B. Z. Spivak, M. P. Gelfand, and Shechao Feng, Phys. Rev. B 44, 10760 (1991).
  10. D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986).
  11. F. Liers and O. C. Martin, Phys. Rev. B 76, 060405 (R) (2007).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##