Gisterezis namagnichennosti i elektricheskoy polyarizatsii v magnitnykh nanostrukturakh so vzaimodeystviem Dzyaloshinskogo-Moriya

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of the Dzyaloshinskii–Moriya interaction (DMI) on the formation of polar structures in nanoscale magnetoelectric films has been studied. The sequence of micromagnetic structures of different topology at magnetization and remagnetization of a film of limited size in a magnetic field oriented along the normal to the film surface is investigated. It is shown that the formation of polar structures is related to the existence of magnetic structures. Specific features of polar states in dependence of the DMI type and the interface symmetry is analyzed.

作者简介

Z. Gareeva

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences; Bashkir State University

Email: zukhragzv@yandex.ru
450075, Ufa, Russia; 450076, Ufa, Russia

N. Shul'ga

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences; Bashkir State University

Email: shulga@anrb.ru
450075, Ufa, Russia; 450076, Ufa, Russia

I. Sharafullin

Bashkir State University

Email: zukhragzv@yandex.ru
450076, Ufa, Russia

R. Doroshenko

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences;

Email: zukhragzv@yandex.ru
450075, Ufa, Russia

A. Zvezdin

Prokhorov General Physics Institute of the Russian Academy of Sciences; Lebedev Physical Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zukhragzv@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

参考

  1. S. Manipatruni, D. N. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh and I. A. Young, Nature 565, 7737 (2019).
  2. G. Tian, W. Yang, D. Chen, G. Fan, Z. Hou, M. Alexe and X. Gao, Nat. Sci. Rev. 6, 684 (2019).
  3. M. Y. Liu, T. L Sun, X. L. Zhu, X. Q. Liu, H. Tian and X. M. Chen, J. Amer. Cer. Soc. 104, 6393 (2021).
  4. A. Fert, N. Reyren and V. Cros, Nat. Rev. Mater. 2, 7 (2017).
  5. L. Caretta, E. Rosenberg, F. Buttner, T. Fakhrul, P. Gargiani, M. Valvidares, Z. Chen, P. Reddy, D. A. Muller and C. Ross, Nat.commun. 11, 1 (2020).
  6. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
  7. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross and G. Beach, Nat. Nanothech. 14, 561 (2019).
  8. D. H. Kim, M. Haruta, H. W. Ko, G. Go, H. J. Park, T. Nishimura, D. Y. Kim, T. Okuno and Y. Hirata, Nat. Mater. 18, 685 (2019).
  9. M. Heide, G. Bihlmayer, S. Blu¨gel, Phys. Rev. B 78, 140403 (2008).
  10. A. Soumyanarayanan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016).
  11. A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty and A. Ognev, Appl. Phys. Lett. 112, 19 (2018).
  12. L. Wang, Q. Feng, Y. Kim, et al., Nat. Mater. 17, 1087 (2018).
  13. J. Lu, L. Si, Q. Zhang, C. Tian, et al., Adv. Mater. 33, 2102525 (2021).
  14. S. Muhlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii and P. B¨onini, Science 323, 915 (2009).
  15. O. Cortes, M. Beg and V. Nehruji, New J. Phys. 20, 113015 (2018).
  16. I. Dzyaloshinsky, N. J. Phys. Chem. Sol. 4, 241 (1958).
  17. А. К. Звездин, А. П. Пятаков, УФН 179, 897 (2009).
  18. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
  19. M. J. Donahue, US Department of Commerce, National Institute of Standards and Technology, (1999).
  20. Z. V. Gareeva, N. V. Shulga and R. A. Doroshenko, Europ. Phys. J. Plus 137, 454 (2022).
  21. K. L. Meltov and K. Y. Guslienko, J. Magn. Magn. Mater. 242, 1015 (2002).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##