Generatsiya elektricheskogo polya v pylevoy plazme

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A nonuniform dusty plasma, micrometer-size particles or microdroplets of which are located in a dense gas or in atmospheric air, is excited by an energy pulse leading to the weak ionization of the gas. As a result, the particles charge through the attachment of gaseous ions to them. The stability of dusty plasma is determined by the low mobility of charged microparticles. The conditions under which the separation of negative and positive charges occurs in a dusty plasma with the creation the electric field are considered. The criteria are presented for the generation of atmospheric electricity in a dense cloud as a result of the gravitational falling of charged water microdroplets in the atmosphere, the weak ionization of which occurs under the action of cosmic rays. It is shown that this is possible only under a nonuniform space distribution of water microdroplets in the cloud. The peculiarities of a dusty plasma are considered. This plasma exists in Saturn’s rings and in the flow of coal combustion products, as well as in the dusty atmosphere of a coal mine.

作者简介

B. Smirnov

Joint Institute for High Temperatures

编辑信件的主要联系方式.
Email: bmsmirnov@gmail.com
125412, Moscow, Russia

参考

  1. https://solarsystem.nasa.gov/planets/saturn/in-depth
  2. P. Thakur, Advanced Mine Ventilation Respirable Coal Dust, Combustible Gas and Mine Fire Control, Amsterdam, Elsevier (2019).
  3. https://www.theatlantic.com/photo/2011/06/chiles-puyehue-volcano-erupts/100081
  4. B. J. Mason, The Physics of Clouds, Claredon Press, Oxford (1971).
  5. J. Warner, Tellus 7, 450 (1955).
  6. W. R. Leaitch and G. A. Isaak, Atmosp. Environ. 25, 601(1991)
  7. http://en.wikipedia.org/wiki/Liquid-water-content
  8. J. Bricard, in: Problems of Atmospheric and Space Electricity, ed. by C. C. Coronity, Amsterdam, Elsevier (1965), p. 82.
  9. U.S. Standard Atmosphere, U. S. Government Printing O ce, Washington (1976).
  10. M. V. Smolukhowski, Zs. Phys. 17, 585 (1916).
  11. Б. М. Смирнов, УФН 170, 495 (2000)
  12. B. M. Smirnov, Phys. Usp. 43, 453 (2000).
  13. Б. М. Смирнов, УФН 184, 1177 (2014)
  14. B. M. Smirnov, Phys. Usp. 57, 1041 (2014).
  15. N. Liu and V. P. Pasko, J.Geophys. Res. 109, A04301 (2004).
  16. V. P. Krainov, Qualitative Methods in Physical Kinetics and Hydrodynamics, American Inst. of Physics, New York (1992).
  17. J. R. Dwyer and M. Uman, Phys. Rep. 534, 147 (2014).
  18. H. Isra¨el, Atmospheric Electricity, Keter Press Binding, Jerusalem (1973).
  19. R. P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures of Physics, Addison-Wesley, Reading (1964), Vol. 2.
  20. B. M. Smirnov, Global Atmospheric Phenomena Involving Water, Springer Atmospheric Series, Switzerland (2022).
  21. D. A. Gurnett, P. Zarka, R. Manning et al., Nature 409, 313(2001).
  22. H. J. Christian, R. J. Blakeslee, D. J. Boccippio et al., J. Geophys. Res. 108, 4005 (2003).
  23. http://en.wikipedia.org/wiki/Distribution-of-lightning
  24. M. A. Uman, Lightning, McGrow Hill, New York (1969).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##