Caustic-like Structures in UHECR Flux after Propagation in Turbulent Intergalactic Magnetic Fields

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

UHECR propagation in a turbulent intergalactic magnetic field in the small-angle scattering regime is well understood for propagation distances much larger than the field coherence scale. The diffusion theory doesn’t work and unexpected effects may appear for propagation over smaller distances, from a few and up to 10–20 coherence scales. We study the propagation of UHECRs in this regime, which may be relevant for intermediate mass UHECR nuclei and nG scale intergalactic magnetic fields with 1 Mpc coherence scale. We found that the trajectories form a non-trivial caustic-like pattern with strong deviation from isotropy. Thus, measurements of the flux from a source at a given distance will depend on the position of the observer.

作者简介

K. Dolgikh

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

Email: jetp@kapitza.ras.ru
117312, Moscow, Russia; 630090, Novosibirsk, Russia

A. Korochkin

Novosibirsk State University;Universit� Libre de Bruxelles

Email: jetp@kapitza.ras.ru
630090, Novosibirsk, Russia; CP225 Boulevard du Triomphe, 1050, Brussels, Belgium

G. Rubtsov

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

Email: jetp@kapitza.ras.ru
117312, Moscow, Russia

D. Semikoz

APC, Universit� Paris Cit�

Email: jetp@kapitza.ras.ru
Observatoire de Paris 119, 75205, Paris, France

I. Tkachev

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

编辑信件的主要联系方式.
Email: jetp@kapitza.ras.ru
117312, Moscow, Russia; 630090, Novosibirsk, Russia

参考

  1. F. Casse, M. Lemoine, and G. Pelletier, Phys. Rev. D 65, 023002 (2016).
  2. G. Giacinti, M. Kachelriess, and D. V. Semikoz, Phys. Rev. Lett. 108, 261101 (2012).
  3. G. Giacinti, M. Kachelriess, and D. V. Semikoz, JCAP 07, 051 (2018).
  4. D. Harari, S. Mollerach, and E. Roulet, Phys. Rev. D 93, 063002 (2016).
  5. D. Harari, S. Mollerach, and E. Roulet, JHEP 10, 047 (2000).
  6. D. Harari, S. Mollerach, and E. Roulet, and F. Sanchez, JHEP 03, 045 (2002).
  7. K. Dolag, M. Kachelriess, and D. V. Semikoz, JCAP 01, 033 (2009).
  8. D. Harari, S. Mollerach, and E. Roulet, JHEP 08, 022 (1999).
  9. V. Berezinsky and O. Kalashev, Phys. Rev. D 94, 023007 (2016).
  10. R. Alves Batista, A. Dundovic, M. Erdmann, Karl-Heinz Kampert, D. Kuempel, G. M�ller, G. Sigl, A. van Vliet, D. Walz, and T. Winchen, JCAP 05, 038 (2016).
  11. R. Alves Batista et al., JCAP 09, 035 (2022).
  12. A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. Gorski, Journal of Open Source Software 4, 1298 (2019).
  13. K. M. G�rski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J. 622, 759 (2005).
  14. J. Giacalone and J. R. Jokipii, Astrophys. J. 520, 204 (1999).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##