Mekhanizm poperechnogo transporta zaryada v tonkikh plenkakh geksagonal'nogo nitrida bora

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A mechanism of transverse charge transfer through hexagonal boron nitride (h-BN) in a MIS structure has been studied. Experimental data for charge transfer have been analyzed in terms of different models of charge transfer in insulators. It has been shown that charge transfer in h-BN is described by the model of phonon-assisted tunneling between neutral traps. The thermal and optical energies of phonon-coupled traps in h-BN have been determined. Based on charge transfer measurements, XPS spectra, and the ab initio electronic structure of intrinsic defects in h-BN it has been found that boron–nitrogen divacancies are most probably responsible for charge transfer in h-BN and transfer is provided by electrons.

作者简介

D. Islamov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

T. Perevalov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia

A. Gismatulin

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia

I. Azarov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia

E. Spesivtsev

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia

V. Gritsenko

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

编辑信件的主要联系方式.
Email: damir@isp.nsc.ru
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

参考

  1. G. Cassabois, P. Valvin, and B. Gil, Nature Photonics 10, 262 (2016).
  2. K. L. Pey, A. Ranjan, N. Raghavan et al., in 2019 IEEE International Reliability Physics Symposium (IRPS 2019), Monterey, California, USA (2019), p. 311.
  3. M.-Y. Li, S.-K. Su, H.-S.P. Wong, and L.-J. Li, Nature 567, 169 (2019).
  4. D. Akinwande, C. Huyghebaert, C.-H. Wang et al., Nature 573, 507 (2019).
  5. J. Ge, H. Huang, Z. Ma et al., Materials and Design 198, 109366 (2021).
  6. A. Ranjan, N. Raghavan, S. J. O'Shea et al., Sci.Rep. 8, 2854 (2018).
  7. L. Jiang, Y. Shi, F. Hui et al., ACS Appl.Mater. & Interfaces 9, 39758 (2017).
  8. Y. Shi, X. Liang, B. Yuan et al., Nature Electronics 1, 458 (2018).
  9. G.-H. Lee, Y.-J. Yu, C. Lee et al., Appl.Phys. Lett. 99, 243114 (2011).
  10. F. Hui and M. Lanza, Nature Electronics 2, 221 (2019).
  11. L.A. Kasprzak, R.B. Laibowitz, and M. Ohring, J.Appl.Phys. 48, 4281 (1977).
  12. C. Pan, Y. Shi, F. Hui et al., in Conductive Atomic Force Microscopy, ed. by M. Lanza, ch. 1, Wiley-VCH Germany (2017).
  13. F. Hui, C. Pan, Y. Shi et al., Microelectr. Eng. 163, 119 (2016).
  14. K. S. Novoselov, V. I. Fal'ko, L. Colombo et al., Nature 490, 192 (2012).
  15. C.R. Dean, A.F. Young, I. Meric et al., Nature Nanotechnology 5, 722 (2010).
  16. H. Pandey, M. Shaygan, S. Sawallich et al., IEEE Trans. Electron Devices 65, 4129 (2018).
  17. C. Pan, Y. Ji, N. Xiao et al., Adv.Funct.Mater. 27, 1604811 (2017).
  18. С. В. Рыхлицкий, Е.В. Спесивцев, В.А.Швец, В.Ю. Прокопьев, ПТЭ №3, 155 (2009).
  19. D.R. Hamann, Phys.Rev.B 95, 239906 (2017).
  20. P. Giannozzi, O. Andreussi, T. Brumme et al., J. Phys.: Condens.Matter 29, 465901 (2017).
  21. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J.Chem. Phys. 118, 8207 (2003).
  22. V. L. Solozhenko, G. Will, and F. Elf, Sol. St.Comm. 96, 1 (1995).
  23. R. Zallen, The Physics of Amorphous Solids, Wiley-VCH, Germany (1998).
  24. Z.H. Cui, A. J. Oyer, A. J. Glover et al., Small 10, 2352 (2014).
  25. H. Sediri, D. Pierucci, M. Hajlaoui et al., Sci.Rep. 5, 16465 (2015).
  26. L. Song, L. J. Ci, H. Lu et al., Nano Lett. 10 3209 (2010).
  27. H. Park, T.K. Kim, S.W. Cho et al., Sci.Rep. 7 40091 (2017).
  28. G. Cassabois, P. Valvin, and B. Gil, Nature Photonics 10, 262 (2016).
  29. K. Watanabe, T. Taniguchi, and H. Kanda, Nature Materials 3, 404 (2004).
  30. R. S. Singh, R.Y. Tay, W. L. Chow et al., Appl.Phys. Lett. 104 163101 (2014).
  31. W. Schottky, Phys. Z. 15, 872 (1914).
  32. A. Laturia, M. L.V. de Put, and W.G. Vandenberghe, npj 2D Mater.Appl. 2, 6 (2018).
  33. G.G. Roberts and J. I. Polanco, Phys. Stat. Sol. (a) 1, 409 (1970).
  34. V.A. Gritsenko, E. E. Meerson, and Y.N. Morokov, Phys.Rev.B 57, R2081 (1998).
  35. Я.И. Френкель, ЖЭТФ 8, 1292 (1938).
  36. A.V. Shaposhnikov, T.V. Perevalov, V.A. Gritsenko et al., Appl.Phys.Lett. 100, 243506 (2012).
  37. D.R. Islamov, V.A. Gritsenko, C.H. Cheng, and A. Chin, Appl.Phys. Lett. 105, 222901 (2014).
  38. D.R. Islamov, T.V. Perevalov, V.A. Gritsenko et al., Appl.Phys.Lett. 106, 102906 (2015).
  39. Д.Р. Исламов, А. Г. Черникова, М. Г. Козодаев и др., Письма в ЖЭТФ 102, 610 (2015)
  40. D.R. Islamov, A.G. Chernikova, M.G. Kozodaev et al., JETP Lett. 102, 544 (2015).
  41. Д.Р. Исламов, В.А. Гриценко, А. Чин, Автометрия 53, 102 (2017)
  42. D.R. Islamov, V.A. Gritsenko and A. Chin, Optoelectr., Instrument. and Data Proc. 53, 184 (2017).
  43. V.A. Gritsenko, T.V. Perevalov, V.A. Voronkovskii et al., ACS Appl.Mater. & Interfaces 10, 3769 (2018).
  44. D.R. Islamov, V.A. Gritsenko, T.V. Perevalov et al., Materialia 15, 100980 (2021).
  45. К.А. Насыров, В.А. Гриценко, ЖЭТФ 139, 1172 (2011)
  46. K.A. Nasyrov and V.A. Gritsenko, JETP 112, 1026 (2011).
  47. Y.-N. Xu and W.Y. Ching, Phys.Rev.B 44, 7787 (1991).
  48. Ю.Н. Новиков, В.А. Гриценко, Письма в ЖЭТФ 114, 498 (2021)
  49. Yu.N. Novikov and V.A. Gritsenko, JETP Lett. 114, 433 (2021).
  50. A. Zobelli, C.P. Ewels, A.Gloter, and G. Seifert, Phys.Rev.B 75, 094104 (2007).
  51. T.T. Tran, K. Bray, M. J. Ford et al., Nature Nanotechnology 11, 37 (2015).
  52. A. Sajid, J.R. Reimers, and M. J. Ford, Phys.Rev.B 97, 064101 (2018).
  53. L. Weston, D. Wickramaratne, M. Mackoit et al., Phys.Rev.B 97, 214104 (2018).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##