Vzaimodeystvie kompleksov odnoionnykh magnitov [Er(HL)(L)] · 4CHCl3 · H2O s ferromagnitnymi mikrochastitsami

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new method is developed to control the spin relaxation in single-molecular magnets (SMMs) in order to eliminate spin decoherence to the level acceptable for quantum computing at a relaxation frequency of about 102 Hz and a temperature of 2 K. A significant part of the SMMs has rapid magnetic relaxation proceeding through several parallel channels sensitive to the presence of an external magnetic field. Some of the relaxation channels in such materials (also called single-ion magnets (SIMs)) are suppressed using an electromagnet in macroscopic volumes of complexes. This is unacceptable when individual SIM complexes are used as qubits and forces us to look for ways to use a local magnetic field and other types of complex interactions in a specially selected environment, which provides the Zeeman interaction in the absence of an external field. We demonstrate that a composite material made of SIM complexes with Er3+ ions and ferromagnetic microparticles exhibits a remanent magnetization, which is sufficient to decrease the spin relaxation frequency in the volume. In magnitude, this effect competes with the well-known effect of hybridization of the orbitals of a complex during its interaction with a metallic surface. Therefore, the microstructuring of an array of complexes in a ferromagnetic matrix can be used to create local regions with a controlled magnetic relaxation frequency

作者简介

O. Koplak

Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences; First Moscow State Medical University

Email: spintronics2022@yandex.ru
142432, Chernogolovka, Moscow oblast, Russia; 119991, Moscow, Russia

E. Dvoretskaya

Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: spintronics2022@yandex.ru
142432, Chernogolovka, Moscow oblast, Russia

E. Kunitsyna

Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: spintronics2022@yandex.ru
142432, Chernogolovka, Moscow oblast, Russia

R. Morgunov

Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: spintronics2022@yandex.ru
142432, Chernogolovka, Moscow oblast, Russia

参考

  1. M. Mannini, F. Pineider, P. Sainctavit et al., Nat. Mater. 8, 194 (2009).
  2. R. Mitsuhashi, K. S. Pedersen, T. Ueda et al., Chem.Commun. 54, 8869 (2018).
  3. M. Brzozowska, G. Handzlik, M. Zychowicz et al., Magnetochemistry 7, 125 (2021).
  4. A. Zabala-Lekuona, J. M. Seco, and E. Colacio, Coord. Chem. Rev. 441, 213984 (2021).
  5. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).
  6. M. R. Wasielewski, M. D. E. Forbes, N. L. Frank et al., Nat. Rev. Chem. 4, 490 (2020).
  7. A. Gaita-Ari no, F. Luis, S. Hill et al., Nat. Chem. 11, 301 (2019).
  8. G. Serrano, L. Poggini, M. Briganti et al., Nat. Mater. 19, 546 (2020).
  9. E. Dvoretskaya, A. Palii, O. Koplak et al., J. Phys. Chem. Solids 157, 110210 (2021).
  10. J. D. Rinehart and J. R. Long, J. Am. Chem. Soc. 131, 12558 (2009).
  11. M. Ren, S. S. Bao, R. A. S. Ferreirac et al., Chem.Commun. 50, 7621 (2014).
  12. G. Albani, A. Calloni, M. S. Jagadeesh et al., J. Appl. Phys. 128, 035501 (2020).
  13. A. Lodi Rizzini, C. Krull, T. Balashov et al., Phys. Rev. Lett. 107, 177205 (2011).
  14. K. Kumar, O. Stefanczyk, S. Chorazy et al., Inorg. Chem. 58, 5677 (2019).
  15. T. A. Bazhenova, I. A. Yakushev, K. A. Lyssenko et al., Magnetochemistry 6, 60 (2020).
  16. J. T. Coutinho, L. C. J. Pereira, P. Martin-Ramos et al., Mater. Chem. Phys. 160, 429 (2015).
  17. H. Q. Ye, Z. Li, Y. Peng et al., Nat. Mater. 13, 382 (2014).
  18. R. Morgunov, A. Talantsev, E. Kunitsyna et al., IEEE Trans. Magn. 52, 1 (2016).
  19. E. Lucaccini, L. Sorace, M. Perfetti et al., Chem.Commun. 50, 1648 (2014).
  20. R. Jankowski, J. J. Zakrzewski, O. Surma et al., Inorg. Chem. Front. 6, 2423 (2019).
  21. L. Mu�nzfeld, C. Schoo, S. Bestgen et al., Nat.Commun. 10, 1 (2019).
  22. D. C. Izuogu, T. Yoshida, G. Cosquer et al., Chemistry A European J. 26, 6036 (2020).
  23. I. A. Ku�hne, L. Ungur, K. Esien et al., Dalt. Trans. 48, 15679 (2019).
  24. P. Shukla, S. Roy, D. Dolui et al., Eur. J. Inorg. Chem. 2020, 823 (2020).
  25. J. Mayans, Q. Saez, M. Font-Bardia et al., Dalt. Trans. 48, 641 (2019).
  26. Q. Zou, X. Da Huang, J. C. Liu et al., Dalt. Trans. 48, 2735 (2019).
  27. K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
  28. K. N. Shrivastava, Phys. Status Solidi 117, 437 (1983).
  29. Y. S. Ding, K. X. Yu, D. Reta et al., Nat.Commun. 9, 1 (2018).
  30. K. Diller, A. Singha, M. Pivetta et al., RSC Adv. 9, 34421 (2019).
  31. G. Handzlik, M. Magott, M. Arczy nski et al., Dalt. Trans. 49, 11942 (2020).
  32. H. Ogasawara, A. Kotani, R. Potze et al., Phys. Rev. B 44, 5465 (1991).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##