CONSTRAINTS ON WORMHOLE FORMATION FROM PHANTOM DARK ENERGY IN DESI
- Авторы: Moiseev I.A.1, Sazhina O.S.1
-
Учреждения:
- Выпуск: Том 168, № 6 (2025)
- Страницы: 833-842
- Раздел: ЯДРА, ЧАСТИЦЫ, ПОЛЯ, ГРАВИТАЦИЯ И АСТРОФИЗИКА
- URL: https://journals.rcsi.science/0044-4510/article/view/356098
- DOI: https://doi.org/10.7868/S3034641X25120078
- ID: 356098
Цитировать
Аннотация
For dark energy (DE) being a dynamical field, an equation-of-state parameter w < -1 leads to the phantom DE state, allowing wormhole (WH) throats to be stabilized effectively. We investigated the possibility of the existence of traversable WHs, whose stability is fully ensured by phantom DE, the dominance of which was recently indicated by the DESI project. Within the framework of the simple Morris–Thorne model, we derived a phenomenological relation connecting the throat radius b with the energy density of the phantom dynamical field ρph(z). This establishes a direct connection between cosmological parameters and the properties of traversable WHs, showing that phantom DE could, in principle, serve as the exotic matter required to sustain WHs with throat sizes spanning from the gravitational radii of stellar-mass BHs and SMBHs up to cosmological scales. We investigated possible WH formation channels and showed extreme suppression of two mechanisms (Euclidean instanton tunneling and thermal fluctuation nucleation). Using gravitational lensing SQLS constraints on Ellis–Bronnikov WHs, we quantified the fraction of phantom energy that can be trapped in such WHs, f ≈ 10-11, indicating that only a small fraction of the phantom DE can be trapped in WH throats. Overall, our results show both the theoretical consistency and the observational limitations of phantom-supported WHs.
Об авторах
I. A. Moiseev
Автор, ответственный за переписку.
Email: kynitti@gmail.com
O. S. Sazhina
Email: cosmologia@yandex.ru
Список литературы
- S. Weinberg, Gravitation And Cosmology, John Wiley and Sons, New York (1972).
- A. V. Morgunova and O. S. Sazhina, STFI 4, 23 (2020).
- S. M. Carroll, M. Hoffman, and M. Trodden, Can The Dark Energy Equation-Of-State Parameter W Be Less Than -1?, Phys. Rev. D 68, 023509 (2003).
- V. Faraoni, Int. J. Mod. Phys. D 11, 471 (2002).
- I. Maor, R. Brustein, J. McMahon, and P. J. Steinhardt, Phys. Rev. D 65, 123003 (2002).
- V. K. Onemli and R. P. Woodard, Class. Quant. Grav. 19, 4607 (2002).
- D. F. Torres, Phys. Rev. D 66, 043522 (2002).
- P. H. Frampton, Phys. Lett. B 555, 139 (2002).
- Planck Collaboration: N. Aghanim et al., Planck 2018 Results. VI. Cosmological Parameters, Astron. Astrophys. 641, A6 (2020).
- A. G. Adame et al., DESI 2024 VII: Cosmological Constraints From The Full-Shape Modeling Of Clustering Measurements, J. Cosmol. Astropart. Phys. 07, 028 (2025).
- W. Giare et al., An Overview Of What Current Data Can (And Cannot Yet) Say About Evolving Dark Energy, Phys. Dark Univ. 48, 101906 (2025).
- S. Sushkov, Wormholes Supported By A Phantom Energy, Phys. Rev. D 71, 043520 (2005).
- M. Jamil et al., Wormholes Supported By Polytropic Phantom Energy, Europ. Phys. J. C 67, 513 (2010).
- F. S. N. Lobo, Phantom Energy Traversable Wormholes, Phys. Rev. D 71, 084011 (2005).
- R. Garattini and F. S. N. Lobo, Self-Sustained Phantom Wormholes In Semi-Classical Gravity, Class. Quant. Grav. 24, 2401 (2007).
- P. F. Gonzalez-Diaz, Achronal Cosmic Future, Phys. Rev. Lett. 93 071301 (2004).
- P. F. Gonzalez-Diaz, Wormholes And Ringholes In A Dark-Energy Universe, Phys. Rev. D 68, 084016 (2003).
- T. A. Roman, Inflating Lorentzian Wormholes, Phys. Rev. D 47, 1370(1993).
- G. T. Horowitz et al., Creating A Traversable Wormhole, Class. Quant. Grav. 36, 205011 (2019).
- S. Coleman and F. De Luccia, Gravitational Effects On And Of Vacuum Decay, Phys. Rev. D 21 3305 (1980).
- M. S. Morris and K. S. Thorne, Wormholes In Spacetime And Their Use For Interstellar Travel: A Tool For Teaching General Relativity, Amer. J. Phys. 56, 395 (1988).
- A. G. Riess, S. Casertano, W. Yuan et al., Cosmic Distances Calibrated To 1% Precision With Gaia EDR3 Parallaxes And Hubble Space Telescope Photometry Of 75 Milky Way Cepheids Confirm Tension With ΛCDM, Astrophys. J. 908, L6 (2021).
- C. Lemon, T. Anguita, M. W. Auger-Williams, Courbin F., A. Galan, R. McMahon, F. Neira, M. Oguri, P. Schechter, A. Shajib, T. Treu, A. Agnello, and C. Spiniello, Gravitationally Lensed Quasars In Gaia - IV. 150 New Lenses, Quasar Pairs, And Projected Quasars, MNRAS 520, 3305 (2023).
- I. A. Moiseev, O. S. Sazhina, Methods And Prospects Of Observational Search For Wormholes, Zh. Eksp. Teor. Fiz. 167, 205 (2025).
- P. Ginsparg and M. J. Perry, Semiclassical Perdurance Of De Sitter Space, Nucl. Phys. B 222, 245 (1983).
- G. W. Gibbons and S. W. Hawking, Cosmological Event Horizons, Thermodynamics, And Particle Creation, Phys. Rev. D 15, 2738 (1977).
- R. M. Wald, General Relativity, University of Chicago Press (2010).
- H-Y. Guo, C-G. Huang, and Zh. Bin, Temperature At Horizon In De Sitter Spacetime, Europhys. Lett. 72, 1045 (2005).
- H. J. Ellis, Math. Phys. 14, 104 (1973).
- K. A. Bronnikov, Acta Phys. Pol. 84, 251 (1973).
- R. Takahashi and H. Asada, Observational Upper Bound On The Cosmic Abundances Of Negative-Mass Compact Objects And Ellis Wormholes From The Sloan Digital Sky Survey Quasar Lens Search, Astrophys. J. Lett. 768, L16 (2013).
- S. Daiki and N. Oshita, Remote Hawking-Moss Instanton And The Lorentzian Path Integral, arXiv:2409.03978 (2025).
- O. K. Sil'chenko, Galaxies In The First Billion Years Of The Universe's Expansion, Physics-Uspekhi 68, 188 (2025).
- K. Inayoshi, E. Visbal, and Z. Haiman, Ann. Rev. Astron. Astrophys. 58, 27 (2020).
- R. Valiante et al., MNRAS, 457, 3356 (2016).
- F. Sassano et al., MNRAS, 506, 613 (2021).
Дополнительные файлы


