Полевой сдвиг резонанса когерентного пленения населенностей с учетом пространственной неоднородности светового пучка

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуется полевой сдвиг резонанса когерентного пленения населенностей (КПН), возбуждаемого бихроматическим полем в открытой Λ-системе, с учетом гауссового профиля интенсивности лазерного излучения. При этом рассматриваются два метода формирования сигнала ошибки: частотная гармоническая модуляция и фазовая ступенчатая модуляция (фазовые прыжки). Показано, что пространственная неоднородность светового пучка приводит к существенно нелинейной зависимости сдвига сигнала ошибки от интенсивности лазерного излучения. Предложен метод, позволяющий линеаризовать данную зависимость, что имеет важное значение для развития методов подавления полевого сдвига в атомных часах на основе резонансов КПН.

Об авторах

Д. В. Коваленко

Новосибирский государственный университет;Институт лазерной физики Сибирского отделения Российской академии наук

В. И. Юдин

Новосибирский государственный университет;Институт лазерной физики Сибирского отделения Российской академии наук;Новосибирский государственный технический университет

Email: viyudin@mail.ru

М. Ю. Басалаев

Новосибирский государственный университет;Институт лазерной физики Сибирского отделения Российской академии наук;Новосибирский государственный технический университет

Н. В. Строкова

Новосибирский государственный университет

А. В. Тайченачев

Новосибирский государственный университет;Институт лазерной физики Сибирского отделения Российской академии наук

О. Н. Прудников

Новосибирский государственный университет;Институт лазерной физики Сибирского отделения Российской академии наук

Список литературы

  1. F. Riehle, Frequency Standards: Basics and Applications, Wiley-VCH, New York (2005).
  2. L. Maleki and J. Prestage, Metrologia 42, S145 (2005).
  3. A. Derevianko and M. Pospelov, Nat. Phys. 10, 933 (2014).
  4. J. Vanier and C. Tomescu, The Quantum Physics of Atomic Frequency Standards, CRC Press, Boca Raton (2015).
  5. C. Lisdat, G. Grosche, N. Quintin et al., Nature Commun. 7, 12443 (2016).
  6. N. Poli, C. W. Oates, P. Gill, and G. M. Tino, Rivista del Nuovo Cimento 36, 555 (2013).
  7. T. E. Mehlst¨aubler, G. Grosche, Chr. Lisdat, P. O. Schmidt, and H. Denker, Rep. Prog. Phys. 81, 064401 (2018).
  8. M. S. Safronova, Ann. Phys. 531, 1800364 (2019).
  9. G. Alzetta, A. Gozzini, M. Moi, and G. Orriols, Il Nuovo Cimento B 36, 5 (1976).
  10. Б. Д. Агапьев, М. Б. Горный, Б. Г. Матисов, Ю. В. Рождественский, УФН 163, 1 (1993)
  11. B. D. Agap'ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Phys. Usp. 36, 763 (1993).
  12. E. Arimondo, Prog. Opt. 35, 257 (1996).
  13. J. Vanier, Appl. Phys. B 81, 421 (2005).
  14. V. Shah and J. Kitching, Adv. Atom. Mol. Opt. Phys. 59, 21 (2010).
  15. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Opt. Express 13, 1249 (2005).
  16. Z. Wang, Chin. Phys. B 23, 030601 (2014).
  17. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).
  18. M. Zhu and L. S. Cutler, in Proceedings of 32th Annual Precise Time and Time Interval Systems and Applications Meeting, Institute of Navigation, Inc., Reston, Virginia (2000), p. 311.
  19. S. A. Zibrov, I. Novikova, D. F. Phillips, R. L. Walsworth, A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 81, 013833 (2010).
  20. D. Miletic, C. A olderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, Appl. Phys. B 109, 89 (2012).
  21. Y. Yano, W. Gao, S. Goka, and M. Kajita, Phys. Rev. A 90, 013826 (2014).
  22. J. W. Pollock, V. I. Yudin, M. Shuker, M. Yu. Basalaev, A. V. Taichenachev, X. Liu, J. Kitching, and E. A. Donley, Phys. Rev. A 98, 053424 (2018).
  23. D. S. Chuchelov, V. V. Vassiliev, M. I. Vaskovskaya, V. L. Velichansky, E. A. Tsygankov, S. A. Zibrov, S. V. Petropavlovsky, and V. P. Yakovlev, Physica Scripta 93, 114002 (2018).
  24. C. Carl'e, M. Petersen, N. Passilly, M. Abdel Ha z, E. de Clercq, and R. Boudot, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 68, 3249 (2021).
  25. V. I. Yudin, A. V. Taichenachev, M. Yu. Basalaev, T. Zanon-Willette, J. W. Pollock, M. Shuker, E. A. Donley, and J. Kitching, Phys. Rev. Appl. 9, 054034 (2018).
  26. V. I. Yudin, A. V. Taichenachev, M. Yu. Basalaev, T. E. Mehlst¨aubler, R. Boudot, T. Zanon-Willette, J. W. Pollock, M. Shuker, E. A. Donley, and J. Kitching, New J. Phys. 20, 123016 (2018).
  27. M. Abdel Ha z, G. Coget, M. Petersen, C. Rocher, S. Gu'erandel, T. Zanon-Willette, E. de Clercq, and R. Boudot, Phys. Rev. Appl. 9, 064002 (2018).
  28. M. Abdel Ha z, G. Coget, M. Petersen, C. E. Calosso, S. Gu'erandel, E. de Clercq, and R. Boudot, Appl. Phys. Lett. 112, 244102 (2018).
  29. M. Shuker, J. W. Pollock, R. Boudot, V. I. Yudin, A. V. Taichenachev, J. Kitching, and E. A. Donley, Phys. Rev. Lett. 122, 113601 (2019).
  30. M. Shuker, J. W. Pollock, R. Boudot, V. I. Yudin, A. V. Taichenachev, J. Kitching, and E. A. Donley, Appl. Phys. Lett. 114, 141106 (2019).
  31. M. Yu. Basalaev, V. I. Yudin, D. V. Kovalenko, T. Zanon-Willette, and A. V. Taichenachev, Phys. Rev. A 102, 013511 (2020).
  32. Д. В. Коваленко, М. Ю. Басалаев, В. И. Юдин, Т. Занон-Виллет, А. В. Тайченачев, КЭ 51, 495 (2021)
  33. D. V. Kovalenko, M. Yu. Basalaev, V. I. Yudin, T. Zanon-Willette, and A. V. Taichenachev, Quantum Electron. 51, 495 (2021).
  34. C. Carl'e, M. Abdel Ha z, S. Keshavarzi, R. Vicarini, N. Passilly, and R. Boudot, Opt. Express 31, 8160 (2023).
  35. V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, Appl. Phys. Lett. 89, 151124 (2006).
  36. B. H. McGuyer, Y.-Y. Jau, and W. Happer, Appl. Phys. Lett. 94, 251110 (2009).
  37. R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, J. Appl. Phys. 109, 014912 (2011).
  38. Y. Zhang, W. Yang, S. Zhang, and J. Zhao, J. Opt. Soc. Amer. B 33, 1756 (2016).
  39. M. I. Vaskovskaya, E. A. Tsygankov, D. S. Chuchelov, S. A. Zibrov, V. V. Vassiliev, and V. L. Velichansky, Opt. Express 27, 35856 (2019).
  40. S. Yanagimachi, K. Harasaka, R. Suzuki, M. Suzuki, and S. Goka, Appl. Phys. Lett. 116, 104102 (2020).
  41. V. I. Yudin, M. Yu. Basalaev, A. V. Taichenachev, J. W. Pollock, Z. L. Newman, M. Shuker, A. Hansen, M. T. Hummon, R. Boudot, E. A. Donley, and J. Kitching, Phys. Rev. Appl. 14, 024001 (2020).
  42. M. Abdel Ha z, R. Vicarini, N. Passilly, C. E. Calosso, V. Maurice, J. W. Pollock, A. V. Taichenachev, V. I. Yudin, J. Kitching, and R. Boudot, Phys. Rev. Appl. 14, 034015 (2020).
  43. V. I. Yudin, M. Yu. Basalaev, A. V. Taichenachev, D. A. Radnatarov, V. A. Andryushkov, and S. M. Kobtsev, J. Phys. Conf. Ser. 2067, 012003 (2021).
  44. Д. А. Раднатаров, С. М. Кобцев, В. А. Андрюшков, М. Ю. Басалаев, А. В. Тайченачев, М. Д. Радченко, В. И. Юдин, Письма в ЖЭТФ 117, 504 (2023).
  45. А. Н. Литвинов, И. М. Соколов, Письма в ЖЭТФ 113, 791 (2021)
  46. A. N. Litvinov and I. M. Sokolov, JETP Lett. 113, 763 (2021).
  47. К. А. Баранцев, А. С. Курапцев, А. Н. Литвинов, ЖЭТФ 160, 611 (2021)
  48. K. A. Barantsev, A. S. Kuraptsev, and A. N. Litvinov, JETP 133, 525 (2021).
  49. Я. А. Фофанов, И. М. Соколов, ЖЭТФ 162, 297 (2022)
  50. Ya. A. Fofanov and I. M. Sokolov, JETP 135, 255 (2022).
  51. К. А. Баранцев, Г. В. Волошин, А. С. Курапцев, А. Н. Литвинов, И. М. Соколов, ЖЭТФ 163, 162 (2023).
  52. M. Yu. Basalaev, V. I. Yudin, A. V. Taichenachev, M. I. Vaskovskaya, D. S. Chuchelov, S. A. Zibrov, V. V. Vassiliev, and V. L. Velichansky, Phys. Rev. Appl. 13, 034060 (2020).
  53. V. I. Yudin, A. V. Taichenachev, M. Yu. Basalaev, and D. V. Kovalenko, Opt. Express 25, 2742 (2017).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах