FREQUENCY DEPENDENCE OF VACANCY MOVEMENT HYSTERESIS IN A CLOSED MEMRISTOR BASED ON AN EXACTLY SOLVABLE MODEL OF CONTROLLED NONLINEAR DIFFUSION

Capa

Citar

Resumo

The frequency dependence of vacancy movement hysteresis in a memristor closed on both sides under the influence of periodic electric current flowing through the memristor is considered. Based on an exactly solvable nonlinear model, an equation for hysteresis loops during the passage of rectangular current pulses with a duty cycle of 2 is obtained. The efficiency of vacancy charge transfer by current compared to their free diffusion is evaluated. It is shown that maximum efficiency is achieved at a specific memristor switching period, which depends on the amplitude of the applied current. Analytical asymptotics of this dependence and memristor resistance depending on the amplitude and period of the current passing through the memristor are obtained.

Sobre autores

I. Boylo

Galkin Donetsk Institute for Physics and Engineering

Email: boylo@donfti.ru
Rússia, Donetsk, 283048

K. Metlov

Galkin Donetsk Institute for Physics and Engineering

Autor responsável pela correspondência
Email: metlov@donfti.ru
Rússia, Donetsk, 283048

Bibliografia

  1. L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
  2. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins et al., Nature 521, 61 (2015).
  3. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins et al., Sci. Rep. 6, 21331 (2016).
  4. R. Berdan, E. Vasilaki, A. Khiat et al., Sci. Rep. 6, 18639 (2016).
  5. V. Saxena, X. Wu, and K. Zhu, in Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2018, 27-30 May 2018, Florence, Italy, doi: 10.1109/ISCAS.2018.8351766.
  6. F. Liu and C. Liu, in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), doi: 10.1109/dac.2018.8465849.
  7. T. Ahmed, S. Walia, E. L. H. Mayes et al., Sci. Rep. 9, 15404 (2019).
  8. S. Deswal, A. Kumar, and A. Kumar, AIP Adv. 9, 095022 (2019).
  9. G. Yuan, X. Ma, C. Ding et al., in 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), doi: 10.1109/islped.2019.8824944.
  10. N. Wu, A. Vincent, D. Strukov et al., Memristor hardware-friendly reinforcement learning, arXiv:cs.ET/2001.06930.
  11. R. Waser and A. Masakazu, Nat. Mater. 6, 833 (2007).
  12. D. B. Strukov, G. S. Snider, D. R. Stewart et al., Nature 453, 80 (2008).
  13. A. Sawa, Mater. Today 11, 28 (2008).
  14. D. Ielmini and H. S. P. Wong, Nat. Electron. 1, 333 (2018).
  15. L. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976).
  16. Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).
  17. E. Linn, A. Siemon, R. Waser et al., IEEE Trans. Circuits Syst. I 61, 2402 (2014).
  18. J. B. Roldan, E. Miranda, D. Maldonado et al., Adv. Intell. Syst. 5, 2200338 (2023).
  19. D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009).
  20. M. J. Rozenberg, M. J. Sanchez, R. Weht et al., Phys. Rev. B 81, 115101 (2010).
  21. N. Ghenzi, M. J. Sanchez, F. Gomez-Marlasca et al., J. Appl. Phys. 107, 093719 (2010).
  22. S. Larentis, F. Nardi, S. Balatti et al., IEEE Trans. Electron Devices 59, 2468 (2012).
  23. S. Kim, S. Choi, and W. Lu, ACS Nano 8, 2369 (2014).
  24. A. Marchewka, R. Waser, and S. Menzel, in 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), p. 145, doi: 10.1109/sispad.2016.7605168.
  25. A. Marchewka, B. Roesgen, K. Skaja et al., Adv. Electron. Mater. 2, 1500233 (2016).
  26. I. V. Boylo, Phys. Stat. Sol. (b) 254, 1600698 (2017).
  27. N. V. Agudov, A. V. Safonov, A. V. Krichigin et al., J. Stat. Mech. 2020, 024003 (2020).
  28. N. Agudov, A. Dubkov, A. Safonov et al., Chaos Solitons Fractals 150, 111131 (2021).
  29. I. V. Boylo and K. L. Metlov, Roy. Soc. Open Sci. 8, 210677 (2021).
  30. A. Mikhaylov, D. Guseinov, A. Belov et al., Chaos Solitons Fractals 144, 110723 (2021).
  31. S. Tang, F. Tesler, F. G. Marlasca et al., Phys. Rev. X 6, 011028 (2016).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).