SIMULATION OF ENERGY ABSORPTION PROCESSES IN WATER NEAR THE SURFACE OF GOLD NANOPARTICLE UNDER X-RAY PHOTON IRRADIATION
- Autores: Chaynikov A.P1, Kochur A.G.1, Dudenko A.I1
-
Afiliações:
- Rostov State Transport University
- Edição: Volume 166, Nº 2 (2024)
- Páginas: 194-208
- Seção: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261684
- DOI: https://doi.org/10.31857/S0044451024080054
- ID: 261684
Citar
Resumo
Monte Carlo method was used to simulate secondary ionization processes and energy absorption in water around gold nanoparticles with diameters ranging from 2 to 100 nm after photoionization by photons with energies in the range of 20 to 80 keV. The spectra of secondary photons and electrons emitted by nanoparticles arising from cascade decay of inner vacancies in ionized gold atoms were calculated. The average energies re-emitted by nanoparticles by secondary photons and electrons were calculated as functions of nanoparticle diameter, as well as radial dependencies of local absorbed dose in water near the surface of nanoparticles of various diameters. It is shown that the nanoparticle re-emits most of the energy of absorbed primary photons with photoelectrons and Auger electrons. The greatest contribution to the number of secondary ionization events and absorbed dose near the nanoparticle surface comes from Auger electrons formed as a result of cascade relaxation of vacancies in the inner electron shells of gold atoms.
Sobre autores
A. Chaynikov
Rostov State Transport University
Email: chaynikov.a.p@gmail.com
Rússia, 344038, Rostov-on-Don
A. Kochur
Rostov State Transport University
Email: chaynikov.a.p@gmail.com
Rússia, 344038, Rostov-on-Don
A. Dudenko
Rostov State Transport University
Autor responsável pela correspondência
Email: chaynikov.a.p@gmail.com
Rússia, 344038, Rostov-on-Don
Bibliografia
- Y. Liu, P. Zhang, F. Li, X. Jin, J. Li, W. Chen, and Q. Li, Theranostics 8, 1824 (2018); https://doi.org/10.7150/thno.22172.
- Z. Kuncic and S. Lacombe, Phys.Med. Biol. 63, 02TR01 (2018); https://doi.org/10.1088/1361-6560/aa99ce.
- Ю.А. Финогенова, А.А. Липенгольц, В.А. Скрибицкий, К.Е.Шпакова, А.В.Смирнова, А.В.Скрибицкая, Н.Н. Сычева, Е.Ю. Григорьева, Медицинская физика 3, 70 (2023); https://doi.org/10.52775/1810-200X-2023-99-3-70-86.
- A.G. Kochur, A.P. Chaynikov, A. I. Dudenko, and V.A.Yavna, J.Quant. Spectrosc.Radiat.Transf. 286, 108200 (2022); https://doi.org/10.1016/j.jqsrt.2022.108200.
- A.P. Chaynikov, A.G. Kochur, A. I. Dudenko, and V.A.Yavna, J.Quant. Spectrosc.Radiat.Transf. 310, 108714 (2023); https://doi.org/10.1016/j.jqsrt.2023.108714.
- A.P. Chaynikov, A.G. Kochur, A. I. Dudenko, and V.A.Yavna, J.Quant. Spectrosc.Radiat.Transf. 302, 108561 (2023); https://doi.org/10.1016/j.jqsrt.2023.108561.
- F. Moradi, K. Rezaee Ebrahim Saraee, S.F. Abdul Sani, and D.A. Bradley, Radiat.Phys.Chem. 180, 1 09294 (2021); https://doi.org/10.1016/j.radphyschem.2020.109294.
- S. Incerti et al., Int. J.Model. Simul. Sci.Comput. 1, 157 (2010); https://doi.org/10.1142/S1793962310000122.
- Taheri, M. U. Khandaker, F. Moradi, and D. A. Bradley, Radiat. Phys.Chem. 212, 111146 (2023); https://doi.org/10.1016/j.radphyschem.2023.111146.
- J.M. Fernandez-Varea, G.Gonzalez-Munoz, M.E.Galassi, K. Wiklund, B.K. Lind, A. Ahnesjo, and N. Tilly, Int. J.Radiat.Biol. 88, 66 (2012); https://doi.org/10.3109/09553002.2011.598209.
- S.T. Perkins, D.E. Cullen, and M.H. Chen, J. Rathkopf, J. Scofield, and J.H. Hubbell, Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the Llnl Evaluated Atomic Data Library (Eadl), Z =1–100, Technical Report UCRL-50400, Vol. 30 (1991).
- A.P. Chaynikov, A.G. Kochur, A. I. Dudenko, and V.A. Yavna, Opt. Spectrosc. 131, 529 (2023); http://dx.doi.org/10.61011/EOS.2023.04.56366.456022.
- A.P.Chaynikov,A.G.Kochur,A. I.Dudenko, I.D.Petrov, and V.A. Yavna, Phys. Scr. 98, 025406 (2023); https://doi.org/10.1088/1402-4896/acb407.
- A.P. Chaynikov, A.G. Kochur, A. I. Dudenko, and V.A. Yavna, Phys. Scr. 98, 095402 (2023); https://doi.org/10.1088/1402-4896/aceaee.
- A.P. Chaynikov, A.G. Kochur, and A. I. Dudenko, Phys. Scr. 99, 045407 (2024); https://doi.org/10.1088/1402-4896/ad3157.
- A.G. Kochur, A. I. Dudenko, V. L. Sukhorukov, and I.D. Petrov, J.Phys.B: At.Mol.Opt.Phys. 27, 1709 (1994); https://doi.org/10.1088/0953-4075/27/9/011.
- A.G. Kochur, V. L. Sukhorukov, A. J. Dudenko, and P.V. Demekhin, J. Phys.B: At.Mol.Opt.Phys. 28, 387 (1995); https://doi.org/10.1088/0953-4075/28/3/010.
- S. Kucas and R. Karazija, Phys. Scr. 47, 754 (1993); https://doi.org/10.1088/0031-8949/47/6/012.
- A.P. Chaynikov, A.G. Kochur, A. I. Dudenko, and V.A. Yavna, Phys. Scr. 98, 095406 (2023); https://doi.org/10.1088/1402-4896/acef6e.
- A.G. Kochur, A.P. Chaynikov, and V.A. Yavna, Eur.Phys. J.D 73, 80 (2019); https://doi.org/10.1140/epjd/e2019-90185-2.
- A.G. Kochur, A.P. Chaynikov, and V.A. Yavna, J. Electron Spectrosс.Relat. Phenomena 238, 146863 (2020); https://doi.org/10.1016/j.elspec.2019.05.012.
- A.P. Chaynikov, A.G. Kochur, and V.A. Yavna, Radiat.Eff.Defects Solids 177, 814 (2022); https://doi.org/10.1080/10420150.2022.2082296.
- А. П. Чайников, А. Г. Кочур, А. И. Дуденко, ЖЭТФ 164, 927 (2023); https://doi.org/10.31857/S0044451023120076.
- I. Fabrikant, S. Eden, N. J. Mason, and J. Fedor, Adv.Atom.Mol.Opt.Phys. 66, 545 (2017); https://doi.org/10.1016/bs.aamop.2017.02.002.
- R. Kau, I.D. Petrov, V. L. Sukhorukov, and H. Hotop, Z.Phys.D Atom., Mol.Clust. 39, 267 (1997); https://doi.org/10.1007/s004600050137.
- V. L. Sukhorukov, I.D. Petrov, B.M. Lagutin, A. Ehresmann, K.-H. Schartner, and H. Schmoranzer, Phys.Rep. 786, 1 (2019); https://doi.org/10.1016/j.physrep.2018.10.004.
- А. Ф. Аккерман, Моделирование траекторий заряженных частиц в веществе, Энергоатомиздат, Москва (1991).
- J.H. Hubbell and S.M. Seltzer, X-Ray Mass Attenuation Coefficients, NIST Standard Reference Database 126, NIST, PML, Radiation Physics Division (2004); https://dx.doi.org/10.18434/T4D01F.
- И.И. Собельман, Введение в теорию атомных спектров, Наука, Москва (1977) [ I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Elsevier (1972); https://doi.org/10.1016/C2013-002394-8].
- Jablonski, F. Salvat, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database, Version 3.2, NIST, Gaithersburg, MD (2010); https://dx.doi.org/10.18434/T4NK50.
- Y.-K. Kim and M.E. Rudd, Phys.Rev.A 50, 3954 (1994); https://doi.org/10.1103/PhysRevA.50.3954.
- Y.-K. Kim, J. P. Santos, and F.Parente, Phys.Rev.A 62, 052710 (2000); https://doi.org/10.1103/PhysRevA.62.052710.
- M. B. Shah, D. S. Elliott, and H.B. Gilbody, J. Phys.B: At.Mol. Phys. 20, 3501 (1987); https://dx.doi.org/10.1088/0022-3700/20/14/022.
- Y.-K. Kim and J.-P. Desclaux, Phys.Rev.A 66, 012708 (2002); https://doi.org/10.1103/PhysRevA.66.012708.
- W.R. Thompson, M.B. Shah, and H.B. Gilbody, J. Phys.B: At.Mol.Opt.Phys. 28, 1321 (1995); https://dx.doi.org/10.1088/0953-4075/28/7/023.
- Brook, M. F.A. Harrison, and A.C.H. Smith, J. Phys.B: At.Mol. Phys. 11, 3115 (1978); https://dx.doi.org/10.1088/0022-3700/11/17/021.
- W. Hwang, Y.-K. Kim, and M.E. Rudd, J.Chem. Phys. 104, 2956 (1996); http://dx.doi.org/10.1063/1.471116.
- M.A. Bolorizadeh and M.E. Rudd, Phys.Rev.A 33, 882 (1986); https://doi.org/10.1103/PhysRevA.33.882.
- M. J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, NIST Standard Reference Database 8 (XGAM), NIST, PML, Radiation Physics Division (2010); https://dx.doi.org/10.18434/T48G6X.
- C. J. Powell and A. Jablonski, J. Phys.Chem.Ref. Data 28, 19 (1999); https://doi.org/10.1063/1.556035.
- J.C. Ashley, J. Electron Spectros.Relat. Phenomena 50, 323 (1990); https://doi.org/10.1016/0368-2048(90)87075-Y.
- P. de Vera and R. Garcia-Molina, J. Phys.Chem.C 123, 2075 (2019); https://doi.org/10.1021/acs.jpcc.8b10832.
- S. Tanuma, S. Ichimura, K. Goto, and T. Kimura, J. Surf.Analysis 9, 285 (2002); https://doi.org/10.1384/jsa.9.285.
- H. Shinotsuka, S. Tanuma, and C. Powell, Surf. Interface Analysis 54, 534 (2022); https://doi.org/10.1002/sia.7064.
- N. Sinha and B. Antony, J.Phys.Chem.B 125, 5479 (2021); https://doi.org/10.1021/acs.jpcb.0c10781.
- Z. Tan, Y. Xia, M. Zhao, and X. Liu, Radiat. Environ.Biophys. 45, 135 (2006); https://doi.org/10.1007/s00411-006-0049-0.
- Akkerman and E. Akkerman, J.Appl.Phys. 86, 5809 (1999); https://doi.org/10.1063/1.371597.
- J. H. Hubbell, Int. J. Appl. Radiat. Isot. 33, 1269 (1982); https://doi.org/10.1016/0020-708X(82) 90248-4.
- S. J. McMahon et al., Sci.Rep. 1, 18 (2011); https://doi.org/10.1038/srep00018.
- И. В. Щегольков, И. Н. Шейно, В. Ф. Хохлов, А. А. Липенгольц, Медицинская физика 4, 12 (2010).
- И.А. Конобеев, Ю.А. Кураченко, И.Н. Шейно, Известия высших учебных заведений. Ядерная энергетика 1, 155 (2019); https://doi.org/10.26583/npe.2019.1.14.
Arquivos suplementares
