FERROMAGNETIC RESPONSE OF THIN NiI2 FLAKES UP TO ROOM TEMPERATURES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We investigate the magnetic response of thin NiI2 flakes for temperatures above 80 K. Since no magnetic ordering is expected for bulk NiI2, we observe clear paramagnetic response for massive NiI2 single crystals. In contrast, thin NiI2 flakes show well-defined ferromagnetic hysteresis loop within ±2 kOe field range. The value of the response does not scale with the sample mass, ferromagnetic hysteresis can be seen for any flake orientation in the external field, so it originates from the sample surface, possibly, due to the anisotropic exchange (Kitaev interaction). The observed ferromagnetism is weakly sensitive to temperature up to 300 K. If a flake is multiply exposed to air, ferromagnetic hysteresis is accompanied by the periodic modulation of the magnetization curves, which is usually a fingerprint of the multiferroic state. While NiI2 flakes can not be considered as multiferroics above 80 K, surface degradation due to the crystallohydrate formation decreases the symmetry of NiI2 surface, which produces the surface ferroelectric polarization in addition to the described above ferromagnetic one.

Sobre autores

N. Orlova

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

A. Avakyants

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

A. Timonina

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

N. Kolesnikov

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

E. Deviatov

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: dev@issp.ac.ru
Chernogolovka, Russia

Bibliografia

  1. Yunye Gao, Mingyuan Gao, and Yuerui Lu, Nanoscale 13, 19324 (2021).
  2. Wei Sun, Wenxuan Wang, Hang Li, Guangbiao Zhang, Dong Chen, Jianli Wang, and Zhenxiang Cheng, Nature Comm. 11, 5930 (2020).
  3. Liemao Cao, Xiaohui Deng, Guanghui Zhou, Shi-Jun Liang, Chuong V. Nguyen, L. K. Ang, and Yee Sin Ang, Phys. Rev. B 105, 165302 (2022).
  4. J. Soödequist and T. Olsen, 2D Materials 10, 035016 (2023).
  5. Shuqing Zhang, Fawei Tang, Xiaoyan Song, and Xinping Zhang, Phys. Rev. B 105, 104105 (2022).
  6. T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Tokunaga, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett. 106, 167206 (2011).
  7. T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Kaneko, and Y. Tokura, Phys. Rev. B 87, 1 (2013).
  8. Hwiin Ju, Youjin Lee, Kwang-Tak Kim, In Hyeok Choi, Chang Jae Roh, Suhan Son, Pyeongjae Park, Jae Ha Kim, Taek Sun Jung, Jae Hoon Kim, Kee Hoon Kim, Je-Geun Park, and Jong Seok Lee, Nano Lett. 21, 5126 (2021).
  9. D. Khomskii, Physics 2, 20 (2009).
  10. S. R. Kuindersma, J. P. Sanchez, and C. Haas, Physica B 111, 231 (1981).
  11. D. Billerey, C. Terrier, N. Ciret, and J. Kleinclauss, Phys. Lett. A 61, 138 (1977).
  12. Q. Song, C. A. Occhialini, . Ergecen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana, S. Picozzi, N. Gedik, and R. Comin, Nature 602, 601 (2022); doi: 10.1038/s41586-021-04337-x.
  13. D. Amoroso, P. Barone, and S. Picozzi, Nature Comm. 11, 5784 (2020); doi: 10.1038/s41467-020-19535-w.
  14. K. Riedl, D. Amoroso, S. Backes, A. Razpopov, Thi Phuong Thao Nguyen, K. Yamauchi, P. Barone, S. M. Winter, S. Picozzi, and R. Valentí, Phys. Rev. B 106, 035156 (2022).
  15. Feng Lou, X. Y. Li, J. Y. Ji, H. Y. Yu, J. S. Feng, X. G. Gong, and H. J. Xiang, J. Chem. Phys. 154, 114103 (2021).
  16. Jinyang Ni, Xueyang Li, Danila Amoroso, Xu He, Junsheng Feng, Erjun Kan, Silvia Picozzi, and Hongjun Xiang, Phys. Rev. Lett. 127, 247204 (2021).
  17. Xuanyi Li, Changsong Xu, Boyu Liu, Xueyang Li, L. Bellaiche, and Hongjun Xiang, arXiv:2211.14416v2 (2023).
  18. D. Lebedev, J. T. Gish, E. S. Garvey, T. Kh. Stanev, J. Choi, L. Georgopoulos, Th. W. Song, H. Y. Park, K. Watanabe, T. Taniguchi, N. P. Stern, V. K. Sangwan, and M. Ch. Hersam, Adv. Funct. Mater. 33, 2212568 (2023).
  19. I. Melchakova, E. A. Kovaleva, N. S. Mikhaleva, F. N. Tomilin, S. G. Ovchinnikov, A. A. Kuzubov, P. Avramov, Int. J. Quant. Chem. 120, 243001 (2019).
  20. A. S. Botana and M. R. Norman, Phys. Rev. Materials B 3, 044001 (2019).
  21. Vadym V. Kulish and Wei Huang, J. Mater. Chem. C, 5, 8734 (2017); doi: 10.1039/C7TC02664A.
  22. A. H. M. Abdul Wasey Debjani Karmakar and G. P. Das, J. Phys.: Cond. Matter 25, 476001 (2013); doi: 10.1088/0953-8984/25/47/476001.
  23. M. Louër, D. Grandjean, and D. Weigel, J. Sol. St. Chem. 7, 222 (1973).
  24. M. A. McGuire, Crystals 7, 121 (2017); doi: 10.3390/cryst7050121.
  25. B. C. Dodrill, Magnetometry Measurements and First-Order-Reversal-Curve (FORC) Analysis, Lake Shore Cryotronics, www.lakeshore.com.
  26. D. A. Gilbert, P. D. Murray, J. De Rojas, R. K. Dumas, J. E. Davies, and K. Liu, Sci. Reps. 11, 4018 (2021).
  27. B. C. Dodrill, H. S. Reichard, and T. Shimizu, Lake Shore Cryotronics. Technical Note, www.lakeshore.com.
  28. B. C. Dodrill, Magnetometry Measurements of Nanomagnetic Materials, Advanced Materials: ThechConnect Briefs, www.lakeshore.com.
  29. S. M. Abozeid, E. M. Snyder, A. P. Lopez, C. M. Steuerwald, E. Sylvester, K. M. Ibrahim, R. R. Zaky, H. M. Abou-El-Nadar, and J. R.Morrow, Eur. J. Inorg. Chem. 1902 (2018); doi: 10.1002/ejic.201800021.
  30. F. Cariati, F. Masserano, M. Martini, and G. Spinolo, J. Raman Spectr. 20, 773 (1989).
  31. V. Gunawan and Ngurah Ayu Ketut Umiati, Int. J. Electr. Comp. Engin. (IJECE) 8, 4823 (2018); doi: 10.11591/ijece.v8i6.
  32. G. Cardenas-Chirivi, K. Vega-Bustos, H. RojasPáez, D. Silvera-Vega, J. Pazos, O. Herrera, M.A. Macías, C. Espejo, W. López-Pérez, J. A. Galvis, ad P. Giraldo-Gallo, arXiv:2212.02490.
  33. A. O. Fumega and J. L. Lado, 2D Materials 9, 025010 (2022); doi: 10.1088/2053-1583/ac4e9d.
  34. D. Lebedev, . T. Gish, E. S. Garvey, T. Kosev Stanev, Junhwan Choi, L. Georgopoulos, T. W. Song, Hong Youl Park, K. Watanabe, T. Taniguchi, N. P. Stern, V. K. Sangwan, and M. C. Hersam, Adv. Funct. Mater. 33, 2212568 (2023).

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies