Teragertsevaya spektroskopiya s vremennym razresheniem (THZ–TDS) svetodiodnykh geterostruktur s tremya i pyat'yu kvantovymiyamami InxGa1−xN/GaN

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using terahertz time-domain spectroscopy (THz-TDS), we have detected resonance frequencies of plasmon oscillations excited in heterostructures with multiple InxGa1 – xN/GaN quantum wells by laser pulses with a duration of 130 fs in the temperature range from 90 to 170 K. The fast Fourier transform of temporal forms of terahertz pulses has made it possible to obtain frequency spectra of the power and of the phase shift of terahertz radiation, the interpretation of which has allowed us to estimate the quasi-momentum relaxation time (τ = 10–12 s), mobility (μ = 4 × 103 cm2/(V s)), and effective mass (m* = 0.45m) of majority charge carriers in these heterostructures. Based on the frequency spectra of power and phase shift of terahertz radiation, we have obtained the temperature dependences of the effective mass and relaxation time of the quasi-momentum of a 2D electron gas (2DEG). The 2DEG mobility value obtained by the THz-TDS method is in good agreement with the Hall measurement data.

Sobre autores

E. Burmistrov

Moscow State University

Email: eugeni.conovaloff@yandex.ru
119234, Moscow, Russia

L. Avakyants

Moscow State University

Autor responsável pela correspondência
Email: avakyants@physics.msu.ru
119234, Moscow, Russia

Bibliografia

  1. B. Richard and M. Schasfoort, Handbook of Surface Plasmon Resonance, (2017).
  2. A. Ando, T. Kurose, V. Reymond, K. Kitano, H. Kitahara, K. Takano, M. Tani, M. Hangyo, and S. Hamaguchi, J. Appl. Phys. 110, 7 (2011).
  3. S. P. Jamison, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, J. Appl. Phys. 93, 7 (2003).
  4. C. Strothk¨amper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, Phys. Rev. B 89, 11 (2014).
  5. A. Mendoza-Galvan and J. Gonzalez-Hernandez, J. Appl. Phys. 87, 760 (2000).
  6. M. Orio and D. Pantazis, F. Neese, Photosynthesis Research 102, 2 (2009).
  7. G. Sun, R. Chen, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron, 19 (2013).
  8. I. Prudaev, S. Sarkisov, O. Tolbanov, and A. Kosobutsky, Phys. Stat. Sol. B 252, 5 (2015).
  9. W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Mat. 27, 48 (2015).
  10. G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, Nano Lett. 16, 8 (2016).
  11. A. M. Ulatowski, L. M. Herz, and M. B. Johnston, J/ of Infrared, Millimeter, and Terahertz Waves 41, 12 (2020).
  12. D. Pashnev, V. V. Korotyeyev, J. Jorudas, T. Kaplas, V. Janonis, A. Urbanowicz, and I. Kaˇsalynas, Appl. Phys. Lett. 117, 16 (2020).
  13. K. H. Tsai, T.-M. Wu, and S. F. Tsay, J. Chem. Phys. 132, 034502 (2010).
  14. V. V. Korotyeyev, V. A. Kochelap, V. V. Kaliuzhnyi, and A. E. Belyaev, Appl. Phys. Lett. 120, 252103 (2022).
  15. P. J. S. van Capel, D. Turchinovich, H. P. Porte, S. Lahmann, U. Rossow, A. Hangleiter, and J. I. Dijkhuis, Phys. Rev. B 84, (2011).
  16. G. Sun, G. Xu, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 17, 48 (2011).
  17. H. P. Porte, D. Turchinovich, D. G. Cooke, and P. U. Jepsen, J. Phys.: Conf. Series 193, 012084 (2009).
  18. М. Л. Бадгутдинов, А. Э. Юнович, ФТП 42, 4 (2008).
  19. В. И. Олешко, С. Г. Горина, Ученые записки физического факультета 5, 155501 (2015).
  20. В. Г. Мокеров, А. Л. Кузнецов, Ю. В. Федоров, Е. Н. Енюшкина, А. С. Бугаев, А. Ю. Павлов, Д. Л. Гнатюк, А. В. Зуев, Р. Р. Галиев, Е. Н. Овчаренко, Ю. Н. Свешников, А. Ф. Цацульников, В. М. Устинов, ФТП 43, 4 (2009).
  21. J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, Optics Express 22, 17 (2009).
  22. G. Franssen, P. Perlin, and T. Suski, Phys. Rev. B 69, 4 (2004).
  23. Z. Chang, Phys. Rev. A 70, 4 (2004).
  24. P. Schley, R. Goldhahn, G. Gobsch, M. Feneberg, K. Thonke, and X. Wang, A. Yoshikawa, Phys. Stat. Sol. B 246, 6 (2009).
  25. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).
  26. G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 2 (1955).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies