Rezonansnyy metod izmereniya parametrov spinovogo transporta v spin-ventil'noy strukture

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The known methods for measuring the spin transport parameters in spin-valve structures are based on the Hanle effect, viz., electron spin precession in an external magnetic field and a decrease in the magnetoresistive signal. These methods make it possible to determine the spin relaxation time in the paramagnetic layer and the relative current polarization constant. We describe an alternative method of measuring in zero external magnetic field, which is based on the resonant increase in the magnetic susceptibility of the paramagnetic layer due to the paramagnetic resonance induced by the nonequilibrium magnetization due to the spin accumulation effect. The proposed method makes it possible to determine the absolute value of spin accumulation in a paramagnet, which can be used as a parameter for numerical solution of three-dimensional diffusion equations of spin transport.

Sobre autores

N. Strelkov

Physics Faculty, Moscow State University

Email: nik@magn.phys.msu.ru
119991, Moscow, Russia

A. Vedyaev

Physics Faculty, Moscow State University

Autor responsável pela correspondência
Email: nik@magn.phys.msu.ru
119991, Moscow, Russia

Bibliografia

  1. S. S. P. Parkin, K. P. Roche, M. G. Samant et al., J. Appl. Phys. 85, 5828 (1999).
  2. S. Tehrani, J. M. Slaughter, M. Deherrera et al., Proc. IEEE 91, 703 (2003).
  3. B. Dieny, V. S. Speriosu, S. S. P. Parkin et al., Phys. Rev. B 43, 1297 (1991).
  4. M. Baibich, J. M. Broto, A. Fert et al., Phys. Rev. Lett. 61, 2472 (1988).
  5. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
  6. N. Strelkov, A. Vedyayev, N. Ryzhanova et al., Phys. Rev. B 84, 024416 (2011).
  7. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
  8. F. J. Jedema, H. B. Heersche, A. T. Filip et al., Nature 416, 713 (2002).
  9. S. Noh, D. Monma, K. Miyake et al., IEEE Trans. Magn. 47, 2387 (2011).
  10. B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, and A. I. Larkin, in Quantum Theory of Solids, ed. by I. M. Lifshits, Mir Publ., Moscow (1982), p. 130.
  11. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, ed. by A. L. Efros and M. B. Pollak, Elsevier, Amsterdam (1985), pp. 1-153.
  12. P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).
  13. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматлит, Москва (1962)
  14. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, ed. by R. Silverman, Dover publ., New York (1963).
  15. D. Pines and P. Nozi'eres, The Theory of Quantum Liquids, Vol. 1, CRC Press, Boca Raton (2018).
  16. S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies