Evolyutsiya otritsatel'noy korony v rezhime ogranicheniya toka razryada: perekhod ot impul'sno-periodicheskogo rezhima k statsionarnomu goreniyu

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The evolution of burning modes of a weak-current corona discharge in a diode filled with atmospheric air, having a pointed cathode and a flat anode, has been investigated. A theoretical description is performed in terms of an axisymmetric multifluid plasma model, including the kinetics of 9 types of particles and 25 plasma-chemical reactions. A discharge in a gap 10 mm long, with a needle-like cathode having a tip curvature radius of 100 μm, a source voltage of 8 kV, a ballast capacitance of 100 pF and a circuit ballast resistance of 1 MΩ, is described in detail. It is shown, both experimentally and theoretically, that the discharge has a lifetime of 180 μs and occurs in four clearly different stages under these conditions: (1) dark breakdown delay phase (0–20 μs); (2) Trichel pulse phase with a variable on–off time ratio and quasi-steady-state corona current component (20–80 μs); and (3) intermediate phase of monotonically rising weak current (80–130 μs), which ends with a vibrational transition to the (4) steady-state phase (130–180 μs), having a typical structure of glow discharge. The tendencies to a change in the corona discharge parameters with a variation in the feed voltage are analyzed. The results of theoretical calculations are in good agreement with the experimental data.

Sobre autores

A. Kozyrev

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

A. Kokovin

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

V. Kozhevnikov

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

V. Tarasenko

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

E. Baksht

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

N. Vinogradov

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kozyrev@to.hcei.tsc.ru
634055, Tomsk, Russia

Bibliografia

  1. L. P. Loeb, Electrical Coronas, University of California, Berkeley CA (1965).
  2. Ю. П. Райзер, Физика газового разряда, Издательство <Интеллект>, Долгопрудный (2009).
  3. В. Н. Ужов, Очистка промышленных газов электрофильтрами, Издательство <Химия>, Москва (1967).
  4. В. В. Базуткин, В. П. Ларионов, Ю. С. Пинталь, Техника высоких напряжений. Изоляция и перенапряжения в электрических системах, Энергоатомиздат, Москва (1986).
  5. G. W. Trichel, Phys. Rev. 54, 1078 (1938).
  6. M. Cˇern'ak, T. Hoder, and Z. Bonaventura, Plasma Sour. Sci. Technol. 29, 013001 (2020).
  7. V. Tarasenko, E. Baksht, V. Kuznetsov, V. Panarin, V. Skakun, E. Sosnin, and D. Beloplotov, J. Atmosph. Sci. Research 3(4), 28 (2020).
  8. N. G. C. Ferreira, D. F. N. Santos, P. G. C. Almeida, G. V. Naidis, and M. S. Benilov, J. Phys. D: Appl. Phys. 52, 355206 (2019).
  9. P. Sattari, C. F. Gallo, G. S. P. Castle, and K. Adamiak, J. Phys. D: Appl. Phys. 44, 155502 (2011).
  10. S. Chen, K. Li, and S. Nijdam, Plasma Sour. Sci. Technol. 28, 055017 (2019).
  11. Y. Zheng, L. Wang, D. Wang, and S. Jia, Phys. Plasmas 24, 063515 (2017).
  12. J. Mizeraczyk, A. Berendt, and Y. Akishev, J. Phys. D: Appl. Phys. 51, 155204 (2018).
  13. A. Sun, X. Zhang, Y. Guo, Y. He, and G. Zhang, Chinese Phys. B 30, 055207 (2021).
  14. A. O. Kokovin, A. V. Kozyrev, and V. Yu. Kozhevnikov, J. Phys.: Conf. Series 2064, 012024 (2021).
  15. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sour. Sci. Technol. 14, 722 (2005).
  16. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveev, and V. P. Silakov, Plasma Sour. Sci. Technol. 1, 207 (1992).
  17. N. M. Zubarev, V. Y. Kozhevnikov, A. V. Kozyrev et al., Plasma Sour. Sci. Technol. 29, 125008 (2020).
  18. COMSOL Multiphysics® v. 6.0. www.comsol.com.COMSOL AB, Stockholm, Sweden.
  19. V. F. Tarasenko, E. Kh. Baksht, N. P. Vinogradov, A. V. Kozyrev, A. O. Kokovin, and V. Yu. Kozhevnikov, JETP Lett. 115, 667 (2022).
  20. Ю. С. Акишев, И. В. Кочетов, А. И. Лобойко, А. П. Напартович, Физика плазмы 28, 1136 (2002).
  21. Yu. S. Akishev, M. E. Grushin, V. B. Karal'nik, and N. I. Trushkin, Plasma Phys. Rep. 27, 520 (2001).
  22. Yu. Akishev, M. Grushin, I. Kochetov, V. Karal'nik, A. Napartovich, and N. Trushkin, Plasma Sour. Sci. Technol. 14, S18 (2005).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies