VLIYaNIE OBLUChENIYa IONAMI Xe S ENERGIEY 167 MEV NA SVERKhPROVODYaShchIE SVOYSTVA VTSP-LENT VTOROGO POKOLENIYa

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Проведены систематические исследования ВТСП-лент второго поколения, облученных высокоэнергетичными ионами Xe с энергией 167 МэВ и флюенсами до 1 ・ 1012 см-2. Определено оптимальное значение флюенса (количества частиц, прошедших через 1 см2 поверхности образца) для получения максимального критического тока при различных температурах и внешних магнитных полях. Увеличение внешнего магнитного поля приводит к смещению пика критического тока в сторону больших значений флюенсов во всем диапазоне температур. Приводятся результаты микроструктурных исследований методами просвечивающей/растровой электронной микроскопии и рентгеновской дифракции. Показано, что в результате облучения образуются ионные треки диаметром порядка 5–8 нм, выступающие в роли эффективных центров пиннинга. Рентгеноструктурный анализ свидетельствует о снижении остроты текстуры под воздействием облучения.

References

  1. A. Markelov, A. Valikov, V. Chepikov, A. Petrzhik, B. Massalimov, P. Degtyarenko, R. Uzkih, A. Soldatenko, A. Molodyk, K. Sim, and S. Hwang, Prog. Supercond. Cryog. 21, 29 (2019).
  2. A. Malozemoff, Annu. Rev. Mater. Res. 42, 373 (2012).
  3. A. Abrikosov, J. Phys. Chem. Solids 2, 199 (1957).
  4. G. Blatter, M. Feigel’man, V. Geshkenbein, A. Larkin, and V. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
  5. V. Selvamanickam, G. Carota, M. Funk, N. Vo, and P. Haldar, IEEE Trans. Appl. Supercond. 11, 3379 (2001).
  6. A. Catana, R. Broom, J. Bednorz, J. Mannhart, and D. Schlom, Appl. Phys. Lett. 60 1016 (1992).
  7. J. MacManus-Driscoll, S. Foltyn, Q. Jia, H. Wang, A. Serquis, B. Maiorov, L. Civale, Y. Lin, M. Hawley, M. Maley, and D. Peterson, Appl. Phys. Lett. 84, 5329 (2004).
  8. N. Strickland, S. Wimbush, J. Kennedy, M. Ridgway, E. Talantsev, and N. Long, IEEE Trans. Appl. Supercond. 25, 1 (2015).
  9. A. Erb, E. Walker, and R. Fl¨ukiger, Physica C Supercond. 258, 9 (1996).
  10. C. Varanasi, P. Barnes, J. Burke, L. Brunke, I. Maartense, T. Haugan, E. Stinzianni, K. Dunn, and P. Haldar, Supercond. Sci. Technol. 19, 37 (2006).
  11. A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwig, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. Pantoja, S. Wimbush, N. Strickland, and A. Vasiliev, Sci Rep. 11, 2084 (2021).
  12. E. Suvorova, P. Degtyarenko, I. Karateev, A. Ovcharov, A. Vasiliev, V. Skuratov, and P. Buffat, J. Appl. Phys. 126, 145106 (2019).
  13. E. Suvorova, P. Degtyarenko, A. Ovcharov, and A. Vasiliev, J. Surf. Investig. 16, 112 (2022).
  14. C. Bean, Phys. Rev. Lett. 8, 250 (1962).
  15. D. Larbalestier, A. Gurevich, D. Feldmann, and A. Polyanskii, Nature 414, 368 (2001).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies