OSOBENNOSTI POLYaRIZOVANNOY LYuMINESTsENTsII NEODNORODNOGO ANSAMBLYa LOKALIZOVANNYKh EKSITONOV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Рассмотрены особенности поляризованной люминесценции, индуцированной магнитным полем в ансамбле локализованных экситонов. Обнаружено, что 1) в неоднородном ансамбле расщепление полос фотолюминесценции в магнитном поле в правой и левой круговых поляризациях может на порядки превышать величину зеемановского расщепления отдельных экситонов в ансамбле; 2) нижняя по энергии полоса фотолюминесценции может иметь меньшую интенсивность, чем верхняя, что на первый взгляд противоречит больцмановскому распределению по энергиям; 3) знак круговой поляризации фотолюминесценции может меняться по контуру полосы излучения. Показано, что в неоднородном ансамбле все эти особенности объясняются зависимостью g-фактора экситона от энергии его локализации.

References

  1. D. G. Thomas and J. J. Hopfield, Bound Exciton Complexes, Phys. Rev. Lett. 7, 316 (1961).
  2. V. P. Kochereshko and I. N. Uraltsev, Polarized Magnetoluminescence Study of Confinement Effects on Shallow Acceptors in: Semiconductors and Insulators: Optical and Spectroscopic Research, Nova Sci. Publ. Inc. (1992).
  3. T. S. Shamirzaev, J. Rautert, D. R. Yakovlev et al., Spin Dynamics and Magnetic Field Induced Polarization of Excitons in Ultrathin GaAs/AlAsQuantum Wells with Indirect Band Gap and Type-II Band Alignment, Phys. Rev. B 96, 035302 (2017).
  4. T. S. Shamirzaev, J. Rautert, D. R. Yakovlev et al., Exciton Recombination and Spin Relaxation in Strong Magnetic Fields in Ultrathin (In, Al)As/AlAs Quantum Wells with Indirect Band Gap and Type-I Band Alignment, Phys. Rev. B 104, 045305 (2021).
  5. E. L. Ivchenko, Magnetic Circular Polarization of Exciton Photoluminescence, Phys. Sol. St. 60, 1514 (2018).
  6. D. R. Yakovlev, A. V. Platonov, E. L. Ivchenko et al., Hidden In-Plane Anisotropy of Interfaces in Zn(Mn)Se/BeTe Quantum Wells with a Type-II Band Alignment, Phys. Rev. Lett. 88, 2574011 (2002).
  7. D. Andronikov, V. Kochereshko, A. Platonov et al., Singlet and Triplet Trion States in High Magnetic Fields: Photoluminescence and Reflectivity Spectra of Modulation-Doped CdTe/Cd0.7Mg0.3Te Quantum Wells, Phys. Rev. B 72, 165339 (2005).
  8. I. N. Uraltsev, V. P. Kochereshko, V. S. Vikhnin et al., Polarized Luminescence Study of Shallow Acceptors in Short-Period Superlattices, Materials Science Forum 65-66 (1990), p. 111, Proc. 4 Int. Conf. Shallow Impurities in Semiconductors, London (1990).
  9. H. P. Gislason, B. Monemar, P. J. Bean et al., Photoluminescence Studies of the 1.911-eV Cu-Related Complex in GaP, Phys. Rev. B 26, 827 (1982).
  10. S. Pemogorov, A. Reznitsky, S. Verbin, and V. Lysenko, Exciton Mobility Edge in CdS1−xSex Solid Solutions, Sol. St. Commun. 47, 5 (1983).
  11. D. Gammon, E. S. Snow, B. V. Shanabrook et al., Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots, Phys. Rev. Lett. 76, 3005 (1996).
  12. С. В. Гупалов, Е. Л. Ивченко, А. В. Кавокин, Тонкая структура локализованных экситонных уровней в квантовых ямах, ЖЭТФ 113, 703 (1998).
  13. K. J. Moore, G. Duggan, P. Dawson et al., Short-Period GaAs-AlAs Superlattices: Optical Properties and Electronic Structure, Phys. Rev. B 38, 5535 (1988).
  14. T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii et al., Atomic and Energy Structure of InAs/AlAs Quantum Dots, Phys. Rev. B 78, 085323 (2008).
  15. J. Debus, T. S. Shamirzaev, D. Dunker et al., Spin-Flip Raman Scattering of the Gamma-X Mixed Exciton in Indirect Band Gap (In,Al)As/AlAs Quantum Dots, Phys. Rev. B 90, 125431 (2014).
  16. R. Heitz, M. Grundmann, N. N. Ledentsov et al., Multiphonon Relaxation Processes in Self-Organized InAs/GaAs Quantum Dots, Appl. Phys. Lett. 68, 361 (1996).
  17. Feng Liu, L. Biadala, A. V. Rodina et al., Spin Dynamics of Negatively Charged Excitons in CdSe/CdS Colloidal Nanocrystals, Phys. Rev. B 88, 035302 (2013).
  18. B. Siebers, L. Biadala, D. R. Yakovlev et al., Exciton Spin Dynamics and Photoluminescence Polarization of CdSe/CdS Dot-in-Rod Nanocrystals in High Magnetic Fields, Phys. Rev. B 91, 155304 (2015).
  19. G. Qiang, A. A. Golovatenko, E. V. Shornikova et al., Polarized Emission of CdSe Nanocrystals in Magnetic Field: The Role of Phonon-Assisted Recombination of the Dark Exciton, Nanoscale 13, 790 (2021).
  20. V. P. Kochereshko, A. V. Platonov, G. V. Mikhailov et al., Temporal Dynamics of Exciton-Trion System, Int. J. Nanosci. 2, 453 (2003).
  21. G. V. Astakhov, A. A. Kiselev, V. P. Kochereshko et al., Radiative Recombination of Electrons and Holes Localized at GaAs/AlGaAs Heterointerface under Magnetic Fields Semicond. Sci. Technol. 14, 110 (1999).
  22. L. Kotova, T. Shamirzaev, V. Kochereshko, Polarized Photoluminescence and g-Factor in an Ensemble of Quantum Dots in Magnetic Fields, arXiv:f2310.02082 (2023).
  23. Ya. V. Terent’ev, S. N. Danilov, J. Loher et al., Magneto-Photoluminescence of InAs/InGaAs/InAlAs Quantum Well Structures, Appl. Phys. Lett. 104, 101111 (2014).
  24. E. S. Moskalenko, L. A. Larsson, M. Larsson et al., Comparative Magneto-Photoluminescence Study of Ensembles and of Individual InAs Quantum Dots, Nano Lett. 9, 353 (2009).
  25. L. M. Roth, B. Lax, and S. Zwerdling, Theory of Optical Magneto-Absorption Effects in Semiconductors, Phys. Rev. 114, 90 (1959).
  26. I. A. Yugova, A. Greilich, D. R. Yakovlev et al., Universal Behavior of the Electron g-Factor in GaAsAlxGa1−xAs Quantum Wells, Phys. Rev. B 75, 245302 (2007).
  27. M. A. Semina, A. A. Golovatenko, and A. V. Rodina, Influence of the Spin-Orbit Split-Off Valence Band on the Hole g-Factor in Semiconductor Nanocrystals, Phys. Rev. B 104, 205423 (2021).
  28. M. A. Semina and R. A. Suris, Holes Localized in Nanostructures in an External Magnetic Field: g-Factor and Mixing of States, Semiconductors 49, 797 (2015).
  29. L. C. Smith, J. J. Davies, D.Wolverson et al., Motion-Dependent Magnetic Properties of Excitons in CdTe, Phys. Rev. B 78, 085204 (2008).
  30. L. C. Smith, J. J. Davies, D. Wolverson et al., Wave-Vector Dependence of Magnetic Properties of Excitons in ZnTe, Phys. Rev. B 83, 155206 (2011).
  31. Th. Wimbauer, K. Oettinger, Al. L. Efros et al., Zeeman Splitting of the Excitonic Recombination in InxGa1−xAs/GaAs Single Quantum Wells, Phys. Rev. B 50, 8889 (1994).
  32. D. Csontosov´a and P. Klenovsk´y, Theory of Magneto-Optical Properties of Neutral and Charged Excitons in GaAs/AlGaAs Quantum Dots, Phys. Rev. B 102, 125412 (2020).
  33. P. S. Grigoryev, O. A. Yugov, S. A. Eliseev et al., Inversion of Zeeman Splitting of Exciton States in InGaAs Quantum Wells, Phys. Rev. B 93, 205425 (2016).
  34. J. J. Davies, L. C. Smith, D.Wolverson et al., Motion-Enhanced Magnetic Moments of Excitons in ZnSe, Phys. Rev. B 81, 085208 (2010).
  35. V. P. Kochereshko, A. V. Platonov, R. T. Cox et al., Increasing of the Exciton-Polariton Zeeman Splitting Due to its Motion, Phys. St. Sol. (c) 11, 3928 (2005).
  36. N. J. Traynor, R. J. Warburton, M. J. Snelling et al., Highly Nonlinear Zeeman Splitting of Excitons in Semiconductor Quantum Wells, Phys. Rev. B 55, 15701 (1997).
  37. Е. Л. Ивченко, А. А. Киселев, Электронный g-фактор в квантовых ямах и сверхрешетках, ФТП 26, 1471 (1992).
  38. A. Greilich, D. R. Yakovlev, A. Shabaev et al., Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots, Science 313, 341 (2006).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies