CHARACTERISTICS OF DEFECTS AND ENTROPY OF MIXING IN HIGH-ENTROPY ALLOYS OF THE FeNiCrCoCu SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Classical molecular dynamics simulation for a number of single crystals ofFeNiCrCoCu system showed that with increasing entropy of mixing the average formation enthalpy of interstitial defects and their shear susceptibility decreases monotonically. For interstitial defects in crystals and defect subsystems of glasses of the same composition, has been established that the average deviator components of dipole tensors decrease with increasing entropy of mixing, and the decrease occurs more strongly in the high-entropy region. All this may indicate the presence of a correlation between mixing entropy and properties of the defect subsystem of crystalline and glassy states.

About the authors

R. A. Konchakov

Department of General Physics, Voronezh State Pedagogical University

Email: konchakov.roman@gmail.com
Russian Federation, 394043, Voronezh

A. S. Makarov

Department of General Physics, Voronezh State Pedagogical University

Email: konchakov.roman@gmail.com
Russian Federation, 394043, Voronezh

N. P. Kobelev

Institute of Solid State Physics, Russian Academy of Sciences

Email: konchakov.roman@gmail.com
Russian Federation, 142432, Chernogolovka, Moscow region

V. A. Khonik

Department of General Physics, Voronezh State Pedagogical University

Author for correspondence.
Email: konchakov.roman@gmail.com
Russian Federation, Voronezh

References

  1. S. C. Glade, R. Busch, D. S. Lee, and W. L. Johnson,J. Appl. Phys. 87, 7242 (2000).
  2. X. Ji and Y. Pan, J. Non-Cryst. Solids 353, 2443 (2007).
  3. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).
  4. H.-R. Jiang, B. Bochtler, S. S. Riegler, X.-S. Wei, N. Neuber, M. Frey, I. Gallino, R. Busch, and J. Shen, J. Alloys Compd. 844, 156126 (2020).
  5. A. S. Makarov, G. V. Afonin, R. A. Konchakov, V. A. Khonik, J. C. Qiao, A. N. Vasiliev, and N. P. Kobelev, Scripta Mater. 239, 115783 (2024).
  6. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
  7. E. P. George, D. Raabe and R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
  8. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Materials Today 19, 349 (2016).
  9. D. Kumar, Progress in Materials Science 136, 101106 (2023).
  10. W. Chen, Nature Commun. 14, 2856 (2023).
  11. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Progress in Materials Science 61, 1 (2014).
  12. R. E. Ryltsev, S. Kh. Estemirova, V. S. Gaviko, D. A. Yagodin, V. A. Bykov, E.V. Sterkhov, L. A. Cherepanova, I. S. Sipatov, I. A. Balyakin, and S. A. Uporov, Materialia 21, 101311 (2022).
  13. S. Uporov, S. Kh. Estemirova, V. A. Bykov, D. A. Zamyatin, and R. E. Ryltsev, Intermetallics 122, 106802 (2020).
  14. S. A. Uporov, R. E. Ryltsev, S. Kh. Estemirova, E. V. Sterkhov, and N. M. Chtchelkatchev, Scripta Materialia 193, 108 (2021).
  15. Z. Li, S. Zhao, R. O. Ritchie, and M. A. Meyers, Progress in Materials Science 102, 296 (2019).
  16. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, S. Kh. Estemirova, and D. . Zamyatin, J. Alloys and Compounds 820, 153228 (2020).
  17. S. A. Uporov, R. E. Ryltsev, V. A. Sidorov, S. Kh. Estemirova, E. V. Sterkhov, I. A. Balyakin, and N. M. Chtchelkatchev, Intermetallics 140, 107394 (2022).
  18. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, N. S. Uporova, S. Kh. Estemirova, and N. M. Chtchelkatchev, J. of Alloys and Compounds 854, 157170 (2021).
  19. H. W. Sheng, W. K. Luo, F. M. Alamgir, and E. Ma, Nature 439, 419 (2006).
  20. Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
  21. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
  22. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and M. Chen, Nature Materials 10, 28 (2011).
  23. A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. R. Yavari, and M. W. Chen, Science 341, 376 (2013).
  24. F. Spaepen, Acta Metall. 25, 407 (1977).
  25. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
  26. Y. C. Hu, P. F. Guan, M. Z. Li, C. T. Liu, Y. Yang, H. Y. Bai, and W. H. Wang, Phys. Rev. B 93, 214202 (2016).
  27. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, Phys. Rev. B 76, 024203 (2007).
  28. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99128 (2000).
  29. H. L. Peng, M. Z. Li, and W. H. Wang, Phys. Rev. Lett. 106, 135503 (2011).
  30. H. Zhang, C. Zhong, J. F. Douglas, X. Wang, Q. Cao, D. Zhang, and J.-Z. Jiang, J. Chem. Phys. 142, 164506 (2015).
  31. J. C. Qiao and J. M. Pelletier, J. Mater. Sci. Technol. 30, 523 (2014).
  32. Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, А. С. Макаров, ФТТ 58(2), 209 (2016).
  33. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 115(5), 308 (2022).
  34. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
  35. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 113, 341 (2021).
  36. J. Plimpton, J. Comp. Phys. 117, 1 (1995).
  37. D. Farkas and A. Caro, J. Mater. Res. 33, 3218 (2018).
  38. М. А. Кретова, Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 111(12), 806 (2020).
  39. A. V. Granato, Eur. Phys. J. B 87, 18 (2014).
  40. D. A. Freedman, D. Roundy, and T. A. Arias, Phys. Rev. B 80, 064108 (2009).
  41. W. G. Wolfer, Fundamental Properties of Defects in Metals, Comprehensive Nuclear Materials, ed. by R. J. M. Konings, Elsevier, Amsterdam (2012).
  42. Y. Zhang, C. Z. Wang, F. Zhang, M. I. Mendelev, M. J. Kramer, and K. M. Ho, Appl. Phys. Lett. 105, 151910 (2014).
  43. T. Brink, L. Koch, and K. Albe, Phys. Rev. B 94, 224203 (2016).
  44. Н. П. Кобелев, В. А. Хоник, УФН 193, 717 (2023).
  45. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
  46. B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, JETP Letters 104, 546 (2016).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».