Termoeds i effekt Kholla v korrelirovannykh metallakh i dopirovannykh mott-khabbardovskikh dielektrikakh: DMFT-priblizhenie

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present comparative theoretical investigation of thermoelectric power and Hall effect in the Hubbard model for correlated metal and Mott insulator (considered as prototype cuprate superconductor) for different concentrations of current carriers. Analysis is performed within standard DMFT approximation. For Mott insulator we consider the typical case of partial filling of the lower Hubbard band (hole doping). We calculate the dependence of thermopower on doping level and determine the critical concentration of carriers corresponding to sign change of thermopower. An anomalous dependence of thermopower on temperature is obtained significantly different from linear temperature dependence typical for the usual metals. The role of disorder scattering is analyzed on qualitative level. The comparison with similar studies of the Hall effect shows, that breaking of electron-hole symmetry leads to the appearance of the relatively large interval of band-fillings (close to the half-filling) where thermopower and Hall effects have different signs. We propose a certain scheme allowing to determine the number of carriers from ARPES data and perform semi-quantitative estimate of both thermopower and Hall coefficient using the usual DFT calculations of electronic spectrum.

About the authors

E. Z. Kuchinskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: kuchinsk@iep.uran.ru
620016, Yekaterinburg, Russia

N. A. Kuleeva

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Email: kuchinsk@iep.uran.ru
620016, Yekaterinburg, Russia

M. V. Sadovskiy

Institute for Electrophysics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: sadovski@iep.uran.ru
620016, Yekaterinburg, Russia

References

  1. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).
  2. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
  3. D. Vollhardt, in Lectures on the Physics of Strongly Correlated Systems XIV, ed. by A. Avella and F. Mancini, AIP Conf. Proc., AIP, Melville, New York, Vol. 1297 (2010), p. 339; ArXiV: 1004.5069.
  4. Э. З. Кучинский, Н. А. Кулеева, Д. И. Хомский, М. В. Садовский, Письма ЖЭТФ 115, 444 (2022)
  5. JETP Letters 115, 402 (2022).
  6. Э. З. Кучинский, Н. А. Кулеева, М. В. Садовский, Д. И. Хомский, ЖЭТФ 163, 417 (2023)
  7. JETP 136, 368 (2023).
  8. Э. З. Кучинский, И. А. Некрасов, М. В. Садовский, УФН 182, 345 (2012)
  9. Physics Uspekhi, 55, 325 (2012).
  10. G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, Rev. Mod. Phys. 90, 025003 (2018).
  11. О. Маделунг, Теория твердого тела, Наука, Москва (1980)
  12. O. Madelung, Festk¨orpertheorie, Springer-Verlag, Berlin (1973).
  13. S. Chakraborty, D. Galanakis, and P. Phillips, Phys. Rev. B 82, 214503 (2010).
  14. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).
  15. Дж. Займан, Принципы теории твердого тела, Мир, Москва (1974)
  16. J. Ziman, Principles of the Theory of Solids, Cambridge University Press (1973).
  17. G. Beni, Phys. Rev. B 19, 2186 (1974).
  18. W. O. Wang, J. K. Ding, E. W. Huang, B. Moritz, and Th. P. Devereaux, arXiv: 2302.13169.
  19. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, ЖЭТФ 133, 670 (2008)
  20. JETP 106, 581 (2008).
  21. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke, and V. I. Anisimov, Phys. Rev. B72, 155105 (2005).
  22. Wenhu Xu, K. Haule, and G. Kotliar, Phys. Rev. Lett. 111, 036401 (2013).
  23. R. S. Allgaier, Phys. Rev. 185, 227 (1969).
  24. Н. Мотт, Э. Дэвис, Электронные процессы в некристаллических веществах, Мир, Москва (1982)
  25. N. F. Mott, E. A. Davis, Electron Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1979).
  26. S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14928 (1992).
  27. T. Honma and P. H. Hor, Phys. Rev. B 77, 184520 (2008).
  28. A. Garg, B. Sriram Shastry, K. B. Dave, and P. Phillips, New J. of Phys. 13, 08332 (2011).
  29. F. F. Balakirev, J. B. Betts, A. Migliori, I. Tsukada, Y. Ando, and G. S. Boebinger, Phys. Rev. Lett. 101, 017004 (2009).
  30. S. Badoux, W. Tabis, F. Laliberte, B. Vignolle, D. Vignolles, J. Beard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
  31. C. Collignon, S. Badoux, S. A. A. Afshar, B. Michon, F. Laliberte, O. Cyr-Choiniere, J.-S. Zhou, S. Licciardello, S. Wiedmann, N. Doiron-Leyraud, anf L. Taillefer, Phys. Rev. B95, 224517 (2017).
  32. C. Proust and L. Taillefer, Annu. Rev. Condens. Matter Phys. 10 409 (2019).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies